首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

2.
采用柠檬酸络合法制备一系列不同铜铈比的Cu-Ce-O/γ-Al_2O_3催化剂,用XRD、H2-TPR对其进行表征,采用连续固定床微反装置对Cu-Ce-O/γ-Al_2O_3催化剂CO催化氧化活性进行评价。结果表明,Cu-Ce-O/γ-Al_2O_3催化剂的XRD图谱中除归属于γ-Al_2O_3的晶相峰外,还出现CuO和CeO_2的晶相峰。高温水热引起活性组分CeO_2的晶粒聚集、长大和尖晶石结构CuAl2O4物质的生成;CuO-CeO_2之间的共生共存与相互作用,使得Cu-Ce-O/γ-Al_2O_3催化剂中具有非完整结构的[Cu2+1-xCu+x][O1-12x12x]增多,Cu+离子和氧空位增多,有利于其H2-TPR还原峰温度向低温区偏移,有利于提高其CO的催化氧化活性,使得Cu-Ce-O/γ-Al_2O_3催化剂的TCO50和TCO90降低。Cu与Ce物质的量比为5∶5制备的Cu-Ce-O/γ-Al_2O_3-55催化剂的TCO50和TCO90分别降至最低的162℃和199℃,表明此时的Cu-Ce-O协同效应最佳;CuO-CeO_2二相的共生共存与相互作用有利于减少高温水热环境下活性组分的聚集和晶粒长大,有利于Cu-Ce-O/γ-Al_2O_3催化剂能够保持较高的CO催化氧化活性。  相似文献   

3.
Zirconia supported on alumina was prepared and characterized by BET surface area, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), temperature programmed desorption (TPD), and pulse reaction. 0.2% Pd/ZrO2/Al2O3 catalyst were prepared by incipient wetness impregnation of supports with aqueous solution of Pd(NO3)2. The effects of support properties on catalytic activity for methane combustion and CO oxidation were investigated. The results show that ZrO2 is highly dispersed on the surface of Al2O3 up to 10 wt.% ZrO2, beyond this value tetragonal ZrO2 is formed. The presence of a small amount of ZrO2 can increase the surface area, pore volume and acidity of support. CO–TPD results show that the increase of CO adsorption capacity and the activation of CO bond after the presence of ZrO2 lead to the increase of catalytic activity of Pd catalyst for CO oxidation. CO pulse reaction results indicate that the lattice oxygen of support can be activated at lower temperature following the presence of ZrO2, but it does not accelerate the activity of 0.2% Pd/ZrO2/Al2O3 for methane combustion. 0.2% Pd/ZrO2/Al2O3 dried at 120 °C shows highest activity for CH4 combustion, and the activity can be further enhanced following the repeat run. The increase of treatment temperature and pre-reduction can decrease the activity of catalyst for CH4 combustion.  相似文献   

4.
A. Yee  S. J. Morrison  H. Idriss   《Catalysis Today》2000,63(2-4):327-335
The reactions of ethanol over Rh/CeO2 have been investigated using the techniques of temperature programmed desorption (TPD) and FT-IR spectroscopy, in addition to steady state catalytic tests. A comparison with previous studies of ethanol adsorption over Pd/CeO2 [J. Catal. 186 (1999) 279] and Pt/CeO2 [J. Catal. 191 (2000) 30] catalysts is presented. The apparent activation energy for the reaction was 49, 40, and 43 kJ mol−1 for Rh/CeO2, Pd/CeO2 and Pt/CeO2, respectively, while the turnover number (TON) at 400 K was 5.9, 8.6 and 2.6, respectively. Surface compositions of catalysts were characterised by XPS. A decrease of the atomic O(1s)/Ce(3d) ratio of the CeO2 support indicates its partial reduction upon addition of the noble metal. The extent of reduction per metal atom was in the following order: Pt>Pd>Rh. FT-IR and TPD studies have shown that dehydrogenation of ethanol to acetaldehyde occurred over Pd/CeO2, Pt/CeO2 and Rh/CeO2. Moreover, Rh/CeO2 readily dissociated the C–C bond of ethanol at room temperature to form adsorbed CO (IR bands at 1904–2091 cm−1). This was corroborated by the low desorption temperature of CH4 over Rh/CeO2 (450 K) when compared to that of Pd/CeO2 (550 K) or Pt/CeO2 (585 K).  相似文献   

5.
The promotive effects of cerium oxide on commercial three-way catalysts (TWCs) for purification of motor exhaust gases have been widely investigated in recent years. This work shows the cooperative effects of CeO2–Pd on the kinetics of CO oxidation over Pd/CeO2–ZrO2. Under reducing-to-moderately oxidizing conditions, a zero-order O2 pressure dependence is found which can be interpreted on the basis of a mechanism involving a reaction between CO adsorbed on Pd and surface oxygen from the support. The high oxygen-exchange capability of the CeO2–ZrO2 support, as determined from temperature-programmed reduction/oxygen uptake measurements is suggested as being responsible for such a catalytic behavior.  相似文献   

6.
We have examined the adsorption of CO and NO on powder Pd/Al2O3, Pd–Ce/Al2O3 and CeO2/Al2O3 catalysts, using temperature-programmed desorption (TPD). For CO adsorption on oxidized and pre-reduced Pd–Ce/Al2O3 TPD profiles are identical to those observed for Pd/Al2O3, suggesting that interactions between ceria and Pd have a negligible effect on the adsorption properties of CO. It does, however, affect the oxidation state of the palladium particles. For NO, there are differences between Pd/Al2O3 and Pd–Ce/Al2O3. On oxidized catalysts, Pd/Al2O3 is more efficient for NO dissociation. However, pre-reduction increases the amount of NO that can adsorb on Pd–Ce/Al2O3 and react to N2O and N2. In comparison with Pd/Al2O3, reduced Pd–Ce/Al2O3catalysts dissociate NO at relatively high temperatures but they are more reactive and favor N2 over N2O.  相似文献   

7.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

8.
In order to develop a catalyst with high activity and stability for catalytic wet air oxidation (CWAO) process at room temperature and atmospheric pressure, we prepared Fe2O3-CeO2-TiO2/γ-Al2O3 by consecutive impregnation, and determined its properties using BET, SEM, XRF, XPS and chemical analysis techniques. The degradation of an azo dye, methyl orange, in CWAO process with Fe2O3-CeO2-TiO2/γ-Al2O3 used as catalyst at room temperature and atmospheric pressure was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 500 mg/L methyl orange, and 98.09% of color and 96.08% of total organic carbon (TOC) can be removed in 2.5 h. The degradation pathway of methyl orange was analyzed by UV–vis and FT-IR spectra. The result of leaching tests shows the catalyst has an excellent stability with negligible leaching ions, and the leaching of Ce is effectively controlled by adding Ti, because Ce and Ti in the catalyst take the form of compound oxides, and the deactivation of the catalyst in successive runs is caused by the adsorption of intermediates on the surface and coverage of the active sites. The catalytic activity of the deactivated catalyst can be generally restored by rinsing it in hydrochloric acid followed by calcination.  相似文献   

9.
Palladium (Pd) supported on CeO2-promoted γ-Al2O3 with various CeO2 (ceria) crystallinities, were used as catalysts in the methane steam reforming reaction. X-ray diffraction (XRD) analysis, FTIR spectroscopy of adsorbed CO, and X-ray photoelectron spectroscopy (XPS) were employed to characterize the samples in terms of Pd and CeO2 structure and dispersion on the γ-Al2O3 support. These results were correlated with the observed catalytic activity and deactivation process. Arrhenius plots at steady-state conditions are presented as a function of CeO2 structure. Pd is present on the oxidized CeO2-promoted catalysts as Pd0, Pd+ and Pd2+, at ratios strongly dependent on CeO2 structure. XRD measurements indicated that Pd is well dispersed (particles <2 nm) on crystalline CeO2 and is agglomerated as large clusters (particles in 10–20 nm range) on amorphous CeO2. FTIR spectra of adsorbed CO revealed that after pre-treatment under H2 or in the presence of amorphous CeO2, partial encapsulation of Pd particles occurs. CeO2 structure influences the CH4 steam reforming reaction rates. Crystalline CeO2 and dispersed Pd favor high reaction rates (low activation energy). The presence of CeO2 as a promoter conferred high catalytic activity to the alumina-supported Pd catalysts. The catalytic activity is significantly lower on Pd/γ-Al2O3 or on amorphous (reduced) CeO2/Al2O3 catalysts. The reaction rates are two orders of magnitude higher on Pd/CeO2/γ-Al2O3 than on Pd/γ-Al2O3, which is attributed to a catalytic synergism between Pd and CeO2. The low rates on the reduced Pd/CeO2/Al2O3 catalysts can be correlated with the loss of Pd sites through encapsulation or particle agglomeration, a process found mostly irreversible after catalyst regeneration.  相似文献   

10.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

11.
The mixed oxide catalyst (Mn2O3 + SnO2) prepared by the coprecipitation method has been impregnated with Pd metal and it's catalytic behaviour for CO oxidation reaction has been investigated. In the coprecipitated material, Mn2O3 and SnO2 were found to crystallise at 875 K and 1175 K, respectively, which are significantly higher than the crystallisation temperatures of individual oxides prepared under similar conditions. Results of catalytic oxidation of CO, carried out using the pulse method for the mixed oxide system and the individual oxides, suggest significant synergistic effects between these two oxides. The impregnation of palladium metal facilitated CO oxidation and the catalyst Pd/(Mn2O3 + SnO2) was found to be quite effective for CO oxidation even at room temperature. Further, the CO disproportionation has been observed on palladium sites in the temperature range 350 to 400 K for the individual oxide systems.  相似文献   

12.
为提高钌基催化剂的高温稳定性,本文采用液相共浸法制备了一系列Ru-CeO x /TiO2复合氧化物催化剂,探究了CeO2对钌基催化剂在HCl氧化过程中催化性能的影响。通过TEM、XRD、N2吸附-脱附、Raman、XPS等表征手段分析催化剂结构及组成,结合催化剂在HCl催化氧化反应中的催化性能,研究了不同Ce负载量对RuO2/TiO2体系的作用规律。结果表明,引入Ce之后改变了活性相RuO2与载体TiO2的相互作用,形成了Ce-O-Ru结构,对钌基催化剂的活性产生一定的负面作用;但是由于抑制了Ru活性位点的烧结失活,同时高浓度的Ce3+物种有利于氧物种的吸附与活化,使含适量Ce的Ru-CeO x /TiO2复合氧化物催化剂能够在较高温度(370℃、400℃)下保持良好的高温稳定性与催化活性,最终确定摩尔比以Ru∶Ce=1∶1较为适宜。  相似文献   

13.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


14.
Nanosized NiO,CeO2 and NiO-CeO2 mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO2 nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO2 interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO2 is able to effectively adsorb CO2,forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO2 co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO2/H2 molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm3?h-1?gcat-1.Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO2 conversion was strongly affected by both the CO/CO2/H2 ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO2 methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the COx co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress.  相似文献   

15.
Catalytic activities of supported Pd were investigated for low temperature oxidation of methane. Pd/SnO2 catalysts demonstrated excellent activity for methane oxidation in spite of their low surface area. The catalytic activity of Pd/SnO2 was strongly affected by the preparation procedure. Impregnation of Pd on SnO2 using aqueous solution of Pd(CH3COO)2 was most effective in enhancing the catalytic activity. The catalytic activity was also improved when well-crystallized SnO2 was employed as a support material. TEM observations revealed that catalytic activity is strongly influenced by the dispersion state of Pd. For the active catalysts, strong interaction between Pd and SnO2 support was observed in the adsorption of oxygen.  相似文献   

16.
Differences in the NOx storage-reduction (NSR) behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 have been identified and traced to their different chemical and structural properties. The results show that Pt/Ba/CeO2 exhibits inferior NOx storage and, particularly, reduction (regeneration) activity compared to the Al2O3 supported catalyst. The incomplete reduction of the stored NOx-species in Pt/Ba/CeO2 seems to be caused by a faster and more profound reoxidation of Pt particles during the lean period as evidenced by in situ X-ray absorption spectroscopy. Interestingly, the reduction activity could be significantly improved by a pre-reduction step at mild conditions. Exposure of the Pt/Ba/CeO2 catalyst to reducing H2 atmosphere in the temperature range 300–500 °C lead to a moderate increase of Pt particle size which beneficially influenced the regeneration activity. In contrast, pre-reduction at temperatures above 500 °C was unfavorable and resulted in a severe decrease of the regeneration activity, probably due to migration of the partially reduced CeO2 onto the surface of Pt particles.  相似文献   

17.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

18.
A CuO/CeO2 catalyst is examined with respect to its performance for preferential oxidation of CO in H2-rich streams. Catalytic activity results are explained on the basis of characterization by operando-DRIFTS and complemented with the analysis of redox properties by electron paramagnetic resonance (EPR) and X-ray photoelectron spectra (XPS). General catalytic activity features are accounted for by comparative analysis of the activities for individual CO and H2 oxidation, for which similar CuO and CeO2 interfacial active sites appear to be involved. An interesting particularity is related to observation of a low temperature hydrogen oxidation process in which CO apparently acts as gaseous promoter. A deactivation process taking place rapidly under the reactant stream is evidenced and attributed to accumulation of hydroxyls on the interfacial active sites and/or to copper sintering in the course of the run.  相似文献   

19.
费兆阳  李磊  成超  楼家伟  汤吉海  陈献  崔咪芬  乔旭 《化工学报》2018,69(12):5081-5089
采用浸渍法制备了不同负载量的ZrO2/CeO2·(xZr/Ce)和CeO2/ZrO2·(yCe/Zr)两组催化剂。并采用XRD、Raman、N2-Sorption、TEM和H2-TPR等手段对xZr/Ce和yCe/Zr的结构和性质进行表征,并结合HCl催化氧化活性研究CeO2与ZrO2在反应体系中的相互作用。结果显示,CeO2表面掺杂适量的Zr4+可以增加xZr/Ce表面氧空位浓度,提高其HCl氧化反应活性;但当CeO2表面掺杂过量的Zr4+,Zr元素会以ZrO2的形式存在于xZr/Ce表面,覆盖氧空位,降低了xZr/Ce的反应活性。对于yCe/Zr催化剂,ZrO2表面高分散的CeO2有利于催化活性的提高,但ZrO2表层负载的CeO2对催化活性的贡献具有阈值,当CeO2负载量超过10%后,额外增加的铈物种对催化活性已无显著促进作用;对比发现xZr/Ce的氧空位主要来自于铈锆固溶体,yCe/Zr的氧空位主要来自于高分散的CeO2,由铈锆固溶体产生的氧空位对活性提升更有利;与纯组分CeO2相比,xZr/Ce与yCe/Zr两组催化剂在苛刻条件下的长期稳定性测试中均表现出高反应稳定性。  相似文献   

20.
Methane combustion over Pd/Al2O3 catalysts with and without added Pt and CeO2 in both oxygen-rich and methane-rich mixtures at temperatures in the range 250–520°C has been investigated using a temperature-programmed reaction procedure with on-line gas analysis (FTIR). During the temperature loop under oxygen-rich conditions, there was an appreciable hysteresis in the activity of unmodified Pd/Al2O3, which was greatly enhanced over Pd–Pt/Al2O3. Over both catalysts the hysteresis was reversed under slightly methane-rich atmospheres, and as temperature was reduced, a sudden collapse or fluctuations in activity were shown respectively over Pd–Pt/Al2O3 and Pd/Al2O3. Such non-steady behaviour was almost eliminated over Pd/Al2O3–CeO2. Under a very narrow range of conditions and over a Pd/Al2O3 packed bed, oscillation of methane combustion was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号