首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
MnOx–CeO2 mixed oxides prepared by sol–gel method, coprecipitation method and modified coprecipitation method were investigated for the complete oxidation of formaldehyde. Structure analysis by H2-TPR and XPS revealed that there were more Mn4+ species and richer lattice oxygen on the surface of the catalyst prepared by the modified coprecipitation method than those of the catalysts prepared by sol–gel and coprecipitation methods, resulting in much higher catalytic activity toward complete oxidation of formaldehyde. The effect of calcination temperature on the structural features and catalytic behavior of the MnOx–CeO2 mixed oxides prepared by the modified coprecipitation was further examined, and the catalyst calcined at 773 K showed 100% formaldehyde conversion at a temperature as low as 373 K. For the samples calcined below 773 K, no any diffraction peak corresponding to manganese oxides could be detected by XRD measurement due to the formation of MnOx–CeO2 solid solution. While the diffraction peaks corresponding to MnO2 phase in the samples calcined above 773 K were clearly observed, indicating the occurrence of phase segregation between MnO2 and CeO2. Accordingly, it was supposed that the strong interaction between MnOx and CeO2, which depends on the preparation route and the calcination temperature, played a crucial role in determining the catalytic activity toward the complete oxidation of formaldehyde.  相似文献   

2.
The catalytic activity of a series of CeO2–ZrO2 mixed oxides in the total oxidation of methane and light hydrocarbons has been investigated. The influence of dopants like Mn and Cu has also been studied. It is shown that both MnOx and CuO at low loading dissolve within the ceria–zirconia lattice. This strongly influences the redox behaviour of the catalysts by promoting low-temperature reduction of Ce4+. In addition, the ternary oxides show better stability to repeated redox cycles, which is attributed to the presence of ZrO2. The catalytic activity of pure CeO2 is also enhanced in the presence of ZrO2, reaching a maximum with Ce0.92Zr0.08O2; a further promotion of activity is observed with the introduction of MnOx and CuO dissolved into CeO2–ZrO2 lattice.  相似文献   

3.
The direct decomposition of nitric oxide (NO) over barium catalysts supported on various metal oxides was examined in the absence and presence of O2. Among the Ba catalysts supported on single-component metal oxides, Ba/Co3O4 and Ba/CeO2 showed high NO decomposition activities, while Ba/Al2O3, Ba/SiO2, and Ba/TiO2 exhibited quite low activities. The effect of an addition of second components to Co and Ce oxides was further examined, and it was found that the activities were significantly enhanced using Ce–Mn mixed oxides as support materials. XRD results indicated the formation of CeO2–MnOx solid solutions with the cubic fluorite structure. O2-TPD of the CeO2–MnOx solid solutions showed a large desorption peak in a range of relatively low temperature. The BET surface areas of the CeO2–MnOx solid solutions were larger than those of pure CeO2 and Mn2O3. These effects caused by the addition of Mn are responsible for the enhanced activities of the Ba catalysts supported on Ce–Mn mixed oxides.  相似文献   

4.
Manganese–cerium mixed oxide catalysts with different molar ratio Mn/(Mn + Ce) (0, 0.25, 0.50, 0.75, 1) were prepared by citric acid method and investigated concerning their adsorption behavior, redox properties and behavior in the selective catalytic reduction of NOx by NH3. The studies based on pulse thermal analysis combined with mass spectroscopy and FT-IR spectroscopy uncovered a clear correlation between the dependence of these properties and the mixed oxide composition. Highest activity to nitrogen formation was found for catalysts with a molar ratio Mn/(Mn + Ce) of 0.25, whereas the activity was much lower for the pure constituent oxides. Measurements of adsorption uptake of reactants, NOx (NO, NO2) and NH3, and reducibility showed similar dependence on the mixed oxide composition indicating a clear correlation of these properties with catalytic activity. The adsorption studies indicated that NOx and NH3 are adsorbed on separate sites. Consecutive adsorption measurements of the reactants showed similar uptakes as separate measurements indicating that there was no interference between adsorbed reactants. Mechanistic investigations by changing the sequence of admittance of reactants (NOx, NH3) indicated that at 100–150 °C nitrogen formation follows an Eley–Rideal type mechanism, where adsorbed ammonia reacts with NOx in the gas phase, whereas adsorbed NOx showed no significant reactivity under conditions used.  相似文献   

5.
The reaction between hydrogen and NO was studied over 1 wt.% Pd supported on NOx-sorbing material, MnOx–CeO2, at low temperatures. The result of pulse mode reactions suggest that NOx adsorbed as nitrate and/or nitrite on MnOx–CeO2 was reduced by hydrogen, which was spilt-over from Pd catalyst. The NOx storage and reduction (NSR) cycles were carried out over Pd/MnOx–CeO2 in a conventional flow reactor at 150 °C. In a storage step, NO was removed by the oxidative adsorption from a stream of 0.04–0.08% NO, 5–10% O2, and He balance. This was followed by a reducing step, where a stream of 1% H2/He was supplied to ensure the conversion of nitrate/nitrite to N2 and thus restore the adsorbability. It was revealed that the NSR cycle is much more suitable for the H2–deNOx process in excess O2, compared to a conventional steady state reaction mode.  相似文献   

6.
Mesostructured MnOx–Cs2O–Al2O3 nanocomposites have been synthesized by reverse microemulsion method combined with hydrothermal treatment and then applied to the catalytic combustion of methane. Compared to impregnation-derived conventional MnOx/Cs2O/Com-Al2O3 catalyst, the microemulsion-derived catalyst showed higher activity and stability for methane combustion. The T10% of the fresh and of the 72 h aged MnxO–Cs2O–Al2O3 were 475 and 490 °C, respectively, recommending it as a potential candidate catalyst for application in hybrid gas turbines. The homogeneous composition of the microemulsion-derived nanocomposite catalyst can hinder the loss of Cs+ and accelerate the formation of Cs–β-alumina phase, ensuring thus higher activity and stability for methane combustion.  相似文献   

7.
Temperature-programmed reduction (TPR), oxidation (TPO), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to characterise catalysts based on manganese oxides, copper oxides or one of them mixed with platinum or palladium-supported on γ-alumina. The catalysts were characterised before and after they had been exposed either to high temperature in the presence of steam or to sulphur dioxide. Raman spectroscopy, XRD, XPS and TPR performed on the fresh samples of MnOx, mixed MnOx–Pt and MnOx–Pd revealed the presence of a mixture of manganese oxides, particularly Mn2O3. In the fresh mixed MnOx–Pd and CuOx–Pd samples, Pd catalysed the reduction of both MnOx and CuOx, whereas Pt only catalysed the reduction of MnOx. After hydrothermal treatment at 900°C of the MnOx, mixed MnOx–Pt and MnOx–Pd samples, there was a formation of new manganese oxide phase, Mn3O4 detected by Raman spectroscopy. TPR revealed increasing interaction between the metal oxides and the noble metals in the hydrothermally treated mixed MnOx–Pd and CuOx–Pd samples, and also the appearance of interaction in the treated mixed CuOx–Pt sample. The sulphur adsorbed in all the MnOx samples formed sulphate, which was more difficult to reduce than the oxides. Also, the reduction temperature of sulphates was lowered when noble metals are present.  相似文献   

8.
Deactivation of catalysts based on either manganese oxides, copper oxides, platinum, palladium or combinations of these metal oxides and noble metals supported on γ-alumina was studied. The activity of the catalysts for the oxidation of carbon monoxide, naphthalene and methane, in a mixture resembling the flue gases from wood combustion, was measured before and after exposure of the catalysts either to a temperature of 900°C in the presence of steam or to sulphur dioxide. Most of the mixed catalysts were more resistant to hydrothermal and sulphur treatments than the catalysts with a single active component. After the hydrothermal treatment the activity of the MnOx catalyst was enhanced. When Pt is combined with MnOx or CuOx, the loss of activity of Pt was decreased during the hydrothermal treatment. Also, the hydrotreated mixed MnOx–Pd and CuOx–Pd catalysts were more active than the treated Pd catalyst for the oxidation of methane. After sulphur treatment, the activities of the mixed MnOx–Pt (Pt: 0.05 mol%), MnOx–Pd and CuOx–Pd catalysts were improved for the oxidation of carbon monoxide and naphthalene. Among the catalysts studied, the MnOx–Pt, CuOx–Pt and CuOx–Pd catalysts, with a metal oxide and a noble metal loading of 10 and 0.1 mol%/γ-alumina, respectively, had the best combination of activity, thermal stability and resistance to sulphur treatment.  相似文献   

9.
Jun Fan  Xiaodong Wu  Lei Yang  Duan Weng   《Catalysis Today》2007,126(3-4):303-312
CeO2–ZrO2–La2O3 (CZL) mixed oxides were prepared by citric acid sol–gel method. The as-received gel was calcined at 500, 700, 900 and 1050 °C to obtain the so-called C5, C7, C9 and CK, respectively. The C5, C7 and C9 powders were impregnated with H2PtCl6 and then calcined at 500 °C to prepare P5C5, P5C7 and P5C9, respectively. The impregnated CK powders were calcined at 500, 700 and 900 °C to prepare P5CK, P7CK and P9CK, respectively. The XRD and XPS analyses show that the surface distribution of Pt is evidently influenced by the structural and textural properties of the support. The CO adsorption followed by FTIR reveals that the dispersion and the chemisorption sites of Pt are reduced as the calcination temperature of CZL support increases. The chemisorption ability of the CK samples is even completely deactivated. The encapsulation mechanism, which has been applied to explain the so-called strong metal–support interaction (SMSI) after reductive treatment, is introduced here to demonstrate the abnormal observations though the samples were prepared in oxidative atmosphere. The HRTEM results also confirm this explanation. The effects of oxygen vacancies, the chemisorption sites on the Pt surface and Pt/Ce interfacial sites on the three-way catalytic activities are discussed.  相似文献   

10.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


11.
Direct decomposition of N2O was investigated using simulated and real industrial gas stream coming from an adipic acid plant. Two different kinds of catalysts were studied: (i) LaB1−xB′xO3 and CaB1−xCuxO3 (B = Mn, Fe and B′ = Cu, Ni) perovskites (PVKs) and (ii) supported PVKs (10 or 20 wt.%) on γ-Al2O3 and CeO2–ZrO2. The structural modifications induced by the composition of PVK samples affect the catalytic performances: mixed oxide formation in CaMn0.7Cu0.3O3 samples allows to reach the highest values of N2O conversion while the effect of PVK phases is more controversial. The importance of copper on catalytic activities is confirmed by the investigation on CaMn1−xCuxO3 samples. The best results were obtained with a CaMn0.6Cu0.4O3 catalyst calcined at 700 °C for 5 h, in which the presence of copper maximises the Ca3CuMnO6 phase formation. The increase in Cu-content produces a large segregation of CuO despite PVK formation. The best catalyst was tested using industrial gas stream, showing good stability also in the presence of H2O and O2 (8% v/v ) after 1400 h on-stream. To increase surface area, Cu-containing PVKs were deposed on γ-Al2O3 and CeO2–ZrO2, and this latter has been recognised as the best support. Indeed, the activity of the PVKs supported on ceria–zirconia is comparable to and even better than that of the bulk catalysts. A possible explanation regards the support contribution in terms of activity and/or promotion of O2 mobility which enhances the overall activity of the catalyst.  相似文献   

12.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

13.
A series of cobalt–cerium mixed oxide catalysts (Co3O4–CeO2) with a Ce/Co molar ratio of 0.05 were prepared by co-precipitation (with K2CO3 and KOH as the respective precipitant), impregnation, citrate, and direct evaporation methods and then tested for the catalytic decomposition of N2O. XRD, BET, XPS, O2-TPD and H2-TPR methods were used to characterize the catalysts. Catalysts with a trace amount of residual K exhibited higher catalytic activities than those without. The presence of appropriate amount of K in Co3O4–CeO2 may improve the redox property of Co3O4, which is important for the decomposition of N2O. When the amount of K was constant, the surface area became the most important factor for the reaction. The co-precipitation-prepared catalyst with K2CO3 as precipitant exhibited the best catalytic performance because of the presence of ca. 2 mol% residual K and the high surface area. We also discussed the rate-determining step of the N2O decomposition reaction over these Co3O4–CeO2 catalysts.  相似文献   

14.
Design of advanced automotive exhaust catalysts   总被引:9,自引:0,他引:9  
Rhodium (Rh) is a critical component of current automotive three-way catalysts (TWCs), particularly with regard to NOx and CO conversion at rich and stoichiometric air–fuel ratios (A/F). Rh supported on CeO2 was active for NOx and CO conversions but could be deactivated easily by high temperature aging. The cause of the deactivation is ascribed to the sintering of CeO2. ZrO2 incorporation into CeO2 is reported to have high thermal durability in terms of oxygen storage capacity (OSC). There has been no report showing direct experimental evidence that Rh-loaded on CeO2–ZrO2 mixed oxides induced effects on TWC performance improvement in the actual automotive exhaust. In the present paper, the Rh-CeO2 interaction contributing to NOx reduction and the catalytic behavior of Rh-loaded CeO2–ZrO2 mixed oxide is addressed. Incorporating CeO2–ZrO2 into a catalyst offered significant improvement in light-off and warmed-up performances in model gas test. Newly designed TWC including the Rh/CeO2–ZrO2 component were aged and evaluated on an engine dynamometer. Result of engine dynamometer evaluation also revealed that significant improvement in the thermal durability can be achieved by the utilization of the optimized Rh-loaded CeO2–ZrO2 mixed oxide.  相似文献   

15.
The current work is devoted to study of CO interaction with PdO/Al2O3–(Cex–Zr1−x)O2 catalysts. Ceria–zirconia–alumina supports with different Ce/Zr ratio were prepared by sol–gel technique. The FT-IR characterization of CO adsorbed at −120 and 25 °C on oxidized and reduced samples revealed that Ce/Zr ratio modifies the surface properties of support and oxidation state of palladium. The catalyst with Ce/Zr molar ratio 0.5/0.5 was characterized with the highest ability to stabilize palladium in oxide state and the highest activity to oxidize CO. Redox treatment of catalysts improves their catalytic activity.  相似文献   

16.
This work aims at exploring the thermal ageing mechanism of Pt on ceria-based mixed oxides and the corresponding effect on the oxygen storage capacity (OSC) performance of the support material. Pt was supported on low-surface-area CeO2–ZrO2–La2O3 mixed oxides (CK) by impregnation method and subsequently calcined in static air at 500, 700 and 900 °C, respectively. The evolutions of textural, microstructural and redox properties of catalysts after the thermal treatments were identified by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) and high-resolution transmission electron microscope (HRTEM). The results reveal that, besides the sintering of Pt, encapsulation of metal by the mixed oxides occurs at the calcination temperature of 700 °C and above. The burial of Pt crystallites by support particles is proposed as a potential mechanism for the encapsulation. Further, the HRTEM images show that the distortion of the mixed oxides lattice and other crystal defects are distributed at the metal/oxides interface, probably indicating the interdiffusion/interaction between the metal and mixed oxide. In this way, encapsulation of Pt is capable to promote the formation of Ce3+ or oxygen vacancy on the surface and in the bulk of support. The OSC results show that the reducibility and oxygen release behavior of catalysts are related to both the metal dispersion and metal/oxides interface, and the latter seems to be more crucial for those supported on low-surface-area mixed oxides. Judging by the dynamic oxygen storage capacity (DOSC), oxygen storage capacity complete (OSCC) and oxygen releasing rate, the catalyst calcined at 700 °C shows the best OSC performance. This evident promotion of OSC performance is believed to benefit from the partial encapsulation of Pt species, which leads to the increment of Ce3+ or oxygen vacancies both on the surface and in the bulk of oxides despite a loss of chemisorption sites on the surface of metal particles.  相似文献   

17.
Four series of cobalt-based catalysts, such as bare Co3O4 and CoO, CoOx–CeO2 mixed oxides, CoOx supported over alumina and alumina–baria and CoMgAl and CoNiAl hydrotalcites have been synthesized and investigated for the oxidative degradation of phenol in the presence of ozone. Characterizations were obtained by several techniques in order to investigate the nature of cobalt species and their morphological properties, depending on the system. Analyses by XRD, BET, TPR, UV–visible diffuse reflectance spectroscopy and TG/DT were performed.

The CoNiAl hydrotalcite exhibits, after 4 h of reaction, the highest phenol ozonation activity followed by Co(3 wt%)/Al2O3–BaO and CoMgAl. The samples Co(1 wt%)/Al2O3–BaO and Co(1 and 3 wt%)/Al2O3 show a comparable medium activity, while the oxidation properties of bare oxides Co3O4, CoO and CoOx–CeO2 are really low. Leaching of cobalt ions in the water solution was detected during the reaction, the amount varied depending on the nature of catalysts. A massive release was observed for the CoMgAl and CoNiAl hydrotalcites, while cobalt catalysts over alumina and alumina–baria look much more stable. The recycle of CoOx/Al2O3 and CoOx/Al2O3–BaO was studied by performing three consecutive cycles in the phenol oxidation. Because of the potential interest of the cobalt-supported catalysts in the ozonation process, the oxidative degradation of naphtol blue black was also investigated.

On the basis of TPR and UV–visible results it appears that highly dispersed Co2+ ions especially present over Co(3 wt%)/Al2O3–BaO are the main active sites for phenol and naphtol blue black oxidative degradation by ozone.  相似文献   


18.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

19.
A. Yee  S. J. Morrison  H. Idriss   《Catalysis Today》2000,63(2-4):327-335
The reactions of ethanol over Rh/CeO2 have been investigated using the techniques of temperature programmed desorption (TPD) and FT-IR spectroscopy, in addition to steady state catalytic tests. A comparison with previous studies of ethanol adsorption over Pd/CeO2 [J. Catal. 186 (1999) 279] and Pt/CeO2 [J. Catal. 191 (2000) 30] catalysts is presented. The apparent activation energy for the reaction was 49, 40, and 43 kJ mol−1 for Rh/CeO2, Pd/CeO2 and Pt/CeO2, respectively, while the turnover number (TON) at 400 K was 5.9, 8.6 and 2.6, respectively. Surface compositions of catalysts were characterised by XPS. A decrease of the atomic O(1s)/Ce(3d) ratio of the CeO2 support indicates its partial reduction upon addition of the noble metal. The extent of reduction per metal atom was in the following order: Pt>Pd>Rh. FT-IR and TPD studies have shown that dehydrogenation of ethanol to acetaldehyde occurred over Pd/CeO2, Pt/CeO2 and Rh/CeO2. Moreover, Rh/CeO2 readily dissociated the C–C bond of ethanol at room temperature to form adsorbed CO (IR bands at 1904–2091 cm−1). This was corroborated by the low desorption temperature of CH4 over Rh/CeO2 (450 K) when compared to that of Pd/CeO2 (550 K) or Pt/CeO2 (585 K).  相似文献   

20.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号