首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
顾卓明  顾彩香 《润滑与密封》2007,32(11):91-94,97
用适当的表面活性剂对纳米二氧化铈粒子进行表面改性处理,采用透射电镜(TEM)和X-射线衍射法(XRD)观察与测量纳米二氧化铈粒子的形貌、结构和平均直径。将改性后的纳米二氧化铈粒子作为润滑油添加剂,采用四球摩擦磨损试验机测定添加纳米二氧化铈粒子的润滑油的摩擦学性能。利用扫描电镜(SEM)观察磨斑表面形貌以及纳米二氧化铈粒子在摩擦表面的形态等,并探讨了纳米二氧化铈粒子具有优良摩擦学性能的机制。结果表明,经表面改性的纳米二氧化铈在润滑油中具有良好的分散、稳定性;纳米二氧化铈粒子的添加量为0.6%(质量分数)左右时,润滑油在室温与较高温度下均具有优良的减摩、抗磨作用。  相似文献   

2.
考察Span80、Tween80、油酸、十六烷基三甲基溴化铵和十二烷基苯磺酸钠5种表面活性剂在润滑油中对纳米石墨的分散稳定性,对超声波振荡的效用和作用时间进行评估,并就表面活性剂含量对纳米石墨在润滑油中分散稳定性的影响进行研究。结果表明,油酸在5种表面活剂中对纳米石墨的分散效果最好,适当时间的超声波振荡有助于提高纳米石墨在润滑油中的分散稳定性,质量分数2%的油酸显示出最好的分散效果。这可能是由于油酸具有低的HLB值和属于L型吸附等温线类型。  相似文献   

3.
通过对纳米CeO2悬浮液体系中颗粒的表面电性进行测定,采用无机电解质类分散剂(SHP)和非离子型表面活性剂聚乙烯吡咯烷酮(PVP)对纳米CeO2粉体进行了分散实验,研究了超声分散时间及表面活性剂浓度对纳米CeO2粉体在水相介质中分散性能的影响.结果表明,随超声时间的增加,纳米CeO2粉体的分散性增强;随分散剂浓度的增加,纳米CeO2粉体的分散性呈先增后减的变化规律.纳米CeO2粉体在水相介质中的分散工艺为:超声时间20min,浓度为2.0%的SHP.  相似文献   

4.
研究离子液体作为添加剂对石墨烯润滑油分散和润滑性能的影响。通过改变离子液体质量分数、超声功率以及时间等条件,考察离子液体/石墨烯润滑油的分散稳定性;采用Rtec多功能摩擦磨损试验机,以Si3N4/钢为摩擦副,考察不同条件下离子液体/石墨烯润滑油的摩擦学行为;采用扫描电镜和超景深显微镜对磨损表面进行分析,探究离子液体作为添加剂的润滑机制。结果表明:离子液体质量分数为0.002 5%、超声时间为60 min,超声功率为600 W时石墨烯润滑油的分散性和稳定性均显著提高;加入离子液体后,石墨烯润滑油的润滑性能提高,其摩擦因数随离子液体质量分数的增加而下降,随超声功率的增加而降低,随超声时间的增加而增加。研究发现,由于离子液体阳离子的长链结构和自身黏度较大,离子液体构成的润滑膜较厚且易于吸附在摩擦副表面,并与石墨烯发生协同作用形成了混合润滑膜,从而避免了摩擦副之间的直接接触,改善了摩擦磨损性能。  相似文献   

5.
研究纳米二硫化钼作为润滑油添加剂的摩擦学性能。以不同的表面活性剂和不同的超声波分散时间制备纳米二硫化钼润滑油,考察表面活性剂和超声波分散时间对纳米二硫化钼分散稳定性的影响。采用四球机和描电镜考察纳米二硫化钼在润滑油中的摩擦学性能。结果表明,2%油酸表面活性剂和超声波分散30 min可有效提高纳米二硫化钼在润滑油中的分散稳定性,纳米二硫化钼在润滑油中具有良好的抗磨性能、减摩性能,特别是0.01%二硫化钼在润滑油中的抗磨性能和高负荷下的减磨性能更为突出。  相似文献   

6.
采用化学共沉淀法制备Fe3O4磁性粉体,采用球磨分散法将磁性粉体分散于水溶液中,制得稳定分散的纳米Fe3O4磁性液体。实验中用十六烷基三甲基溴化铵(CTAB)对纳米粉体进行表面处理和分散,主要研究球磨时间、溶液pH值和表面活性剂的用量对Fe3O4磁性液体稳定性的影响,从理论上对纳米粒子在水溶液中的分散稳定性进行了分析。结果表明:球磨时间、分散剂种类和用量以及溶液的pH值对磁性液体的稳定性有很重要的影响;在酸性条件下,球磨时间为4~5 h,十六烷基三甲基溴化铵用量为Fe3O4粉体用量的8%时,制得的磁性液体分散稳定性效果较好;表面活性剂在粒子表面起到了保护作用,抑制了粒子团聚长大,同时在溶液中还起到了分散作用,使得磁性液体具有较好的稳定性。  相似文献   

7.
采用聚异丁烯丁二酰亚胺T152/S-80复合表面活性剂(w(Span80)∶w(Tween20)=2∶3(质量比))/异丁醇/500SN基础油/氟化铵水溶液W/O微乳液体系构建微反应器,通过原位表面修饰制备了含纳米LaF3粒子的液体润滑油添加剂,同时,采用洗涤法制备了干粉纳米LaF3。采用X-射线衍射仪(XRD)和透射电镜(TEM)分析了纳米LaF3粒子的结构和形貌。分别将液体添加剂和干粉加入基础油中,采用离心沉降法考察了不同后续分离方法得到的纳米粒子在基础油中的分散稳定性,用四球机考察了它们的摩擦学性能,最后采用扫描电子显微镜(SEM)观察了磨斑表面形貌。结果表明:所构建的微反应器制备的颗粒状纳米LaF3平均粒径在10~15 nm之间;纳米粒子在基础油中的分散稳定性对其摩擦学性能影响很大,液体添加剂中的纳米粒子在基础油中的分散稳定性和摩擦学性能大大高于干粉粒子;液体添加剂中的表面活性剂不仅有利于纳米粒子在基础油中的稳定分散而且有减摩作用。  相似文献   

8.
复合纳米粒子作为润滑油添加剂的摩擦学性能   总被引:3,自引:0,他引:3  
研究了复合纳米粒子作为添加剂对润滑油摩擦学性能的影响.将改性纳米CaCO3和纳米Zn按一定质量分数进行复配后,加入到液体石蜡中,采用摩擦磨损试验机考察了其摩擦学性能;并采用正交试验方法分析了2种纳米粒子的最佳配比和最佳添加量.结果表明,复合纳米粒子综合了CaCO3和Zn 2种纳米粒子的性能,作为润滑油添加剂,比单一的纳米CaCO3和纳米Zn添加剂有更好的抗磨减摩性能;在本文试验条件下,纳米CaCO3和纳米Zn的质量比为1∶1,总质量分数为0.6%时,配制的润滑油具有更好的抗磨减摩性能.  相似文献   

9.
以纳米二氧化铈(CeO2)为磨料,使用球磨与不同化学试剂(如pH值调节剂乙酸、丙酸、植酸和分散剂离子型表面活性剂、非离子型表面活性剂)的协同分散方法制备纳米CeO2抛光液,研究酸性体系下不同抛光液的分散性能与抛光性能。研究表明,球磨时以乙酸为pH值调节剂,调节溶液pH值为3,料球比为1∶4,球磨时间为6 h,球磨后纳米CeO2悬浮液分散效果较好。采用制备的纳米CeO2抛光液对石英玻璃进行抛光实验。结果表明:在磨料质量分数为1%、pH为4的条件下,石英玻璃的材料去除速率最高为409 nm/min,粗糙度仅为0.03 nm;阳离子、非离子型表面活性剂均有助于提升酸性体系下CeO2悬浮液的分散稳定性,而加入非离子表面活性剂AEO-9(脂肪醇聚氧乙烯醚)效果最佳,其能够在提高分散稳定性的基础上改善石英玻璃的表面质量。  相似文献   

10.
采用无机电介质六偏磷酸钠(SHP),非离子型表面活性剂聚乙二醇(PEG400),阳离子型表面活性剂十六烷基三甲基氯化铵(CATC),阴离子型表面活性剂十二烷基苯磺酸钠(SDBS)作为分散剂,研究纳米α-Al2O3在水相介质中的分散稳定性.系统研究了分散剂质量分数、分散剂种类、pH值以及超声时间对于纳米α-Al2O3在水相介质中的分散性能的影响.结果表明,分散剂的质量分数对于分散体系稳定性影响最大,每一种分散剂都有其最佳值.随着超声时间的增加,分散体系稳定性呈先增后减的趋势.选用SDBS作为分散剂,分散剂质量分数为2.0%,pH =9,超声时间为20 min时纳米α-Al2O3在水相介质中的分散稳定性最好.  相似文献   

11.
采用阴离子表面活性剂和非离子表面活性剂双层包覆的方法制备得到聚醚基磁流体.通过研究表面活性剂的化学结构式,讨论了双层包覆方法的化学机理;重点探讨了非离子表面活性剂的种类、用量以及非离子表面活性剂的包覆温度对Fe304粒子分散性的影响;得到了提高包覆Fe3O3粒子分散稳定性的最佳工艺和参数.这种制备工艺能够显著提高聚醚基磁流体的稳定性.  相似文献   

12.
采用表面化学改性的方法得到硬脂酸修饰的纳米碳球,在四球摩擦试验机上考察纳米碳球在合成酯类润滑油中的抗摩擦性能,探讨纳米碳球的抗磨与润滑机制。结果表明,通过表面改性,显著提高纳米碳球在润滑油中的分散稳定性;纳米碳球作为合成酯润滑油抗磨剂表现出优良的抗磨减摩性能;在转速1.200 r/min,载荷150 N的实验条件下,质量分数0.07%的改性纳米碳球可使三羟甲基丙烷混酸酯平均摩擦因数减小幅度达到30%左右,磨损率降低33%,质量分数0.15%的改性纳米碳球可使季戊四醇油酸酯的平均摩擦因数降低幅度达到50%以上,磨损率降低14.6%  相似文献   

13.
王学军  李宁  颜家振 《机械》2010,37(10):65-68
主要研究了润滑油中纳米粒子添加剂的含量对冷挤压过程中润滑特性的影响规律。采用粒径为20~30nm的Fe3O4纳米粒子分散于52#汽缸油中配置成具有不同质量分数的纳米粒子改性润滑油,并将该润滑油应用于钛合金(TA2)棒材的冷挤压实验,论文系统研究了润滑油中Fe3O4纳米粒子的添加量对钛合全冷挤压成形的最大成形力、成形功、表面质量(Ra)及HV的影响规律并对其润滑机理进行了分析,结果表明:当润滑油中Fe3O4纳米粒子质量分数为8%时。纳米改性润滑油的润滑效果最佳,挤压成形力和成形功最小,成形件表面质量最好。纳米粒子的填充与滚动作用及其对52#汽缸油膜的支承作用是改善润滑油润滑性能的主要原因。  相似文献   

14.
王方圆 《润滑与密封》2023,48(12):46-54
为提高铜互连化学机械抛光(CMP)后表面质量,在抛光液中需引入适当的表面活性剂以改善磨料的稳定性以及CMP后铜的表面粗糙度。研究了十二烷基硫酸铵(ADSA)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、直链烷基苯磺酸(LABSA)3种不同阴离子表面活性剂,以及非离子表面活性剂脂肪醇聚氧乙烯醚(AEO-9)和LABSA复配表面活性剂对钽阻挡层抛光液润湿性、分散性以及对材料去除速率的影响。通过接触角测量仪、纳米粒度仪、扫描电镜和原子力显微镜测试表面张力、接触角、大颗粒数、粒径分布以及CMP后铜的表面粗糙度,并分析复配表面活性剂的作用机制。结果表明:抛光液中加入LABSA后,因其具有直链型结构,抛光液的润湿性和分散性效果最好,抛光后铜表面的粗糙度最低;AEO-9和LABSA进行复配,相较于单一的LABSA,抛光液的润湿性、分散性、稳定性和抛光后铜表面粗糙度均有所改善,体积分数0.1%LABSA+0.1%AEO-9的复配表面活性剂性能最优,CMP后铜表面粗糙度降至0.7 nm。  相似文献   

15.
纳米碳酸钙、稀土复合粒子用作润滑油添加剂的研究   总被引:6,自引:1,他引:5  
选择合适的表面活性剂制备含纳米碳酸钙和纳米稀土复合粒子添加剂的润滑油,采用四球摩擦磨损试验机考察了润滑油的摩擦学性能;用扫描电镜与X射线光电子能谱仪分析了磨损钢球表面的形貌、化学组成和状态。结果表明:纳米碳酸钙、纳米稀土复合粒子的最佳添加方式为:CaCO3与RE质量比为1:1,总质量分数为0.6%;此时润滑油具有最佳的抗磨、减摩性能,润滑油的抗磨、减摩机理与纳米粒子存在形态以及它们的协同作用有关。  相似文献   

16.
绿色金属铋系纳米材料在满足润滑剂环保要求同时也显示了良好的摩擦学性能。综述了近年来纳米材料的制备方法以及铋系纳米材料在润滑油脂中的作用机制和应用进展,并指出了铋系纳米材料作为润滑油脂添加剂在摩擦学中的研究发展趋势。铋系纳米材料在润滑油脂中的作用机制为:铋系纳米有机物易于吸附在摩擦金属表面上,生成了一层有机复合膜;由于铋金属纳米粒子带有电荷而向表面移动,并沉积于摩擦表面形成非晶体或无定形膜,从而起到减摩抗磨作用。铋纳米粒子在润滑油中的分散性和稳定性问题是影响其在润滑中推广应用的主要因素,通过改进纳米粒子的制备工艺及研制和合成新的分散剂和稳定剂,可解决润滑油中纳米粒子在苛刻条件下的稳定性。  相似文献   

17.
采用化学沉淀法分别制备了经表面修饰的纳米Fe3O4和纳米CuO粒子,在透射电镜下研究了纳米粒子的粒径大小、形貌及其分散性;在四球摩擦试验机上,研究了纳米Fe3O4和纳米CuO粒子对润滑油承载能力的影响,同时在CSS-2220型万能试验机上,对比研究了添加纳米Fe3O4和纳米CuO粒子的润滑油在LY12热挤压成形过程中的润滑性能.试验结果表明:所制备的纳米Fe3O4和纳米CuO粒子均呈球形、平均粒径分别为10和20 nm,在润滑油中均具有良好的分散性;纳米Fe3O4和纳米CuO粒子均可以提高润滑油的最大无卡咬载荷,其中纳米Fe3O4粒子的性能优于纳米CuO粒子;添加纳米Fe3O4和纳米CuO粒子的润滑油均可降低挤压变形功,挤压件表面SEM形貌结果表明,纳米粒子的存在有效地隔离了挤压件与模具表面的直接接触,减少了挤压件表面犁沟数量,降低了热挤压变形功.  相似文献   

18.
采用化学法制备纳米镍粒子,用油酸对其进行表面改性,利用XRD和SEM对其进行表征。将不同质量分数的纳米镍粒子加入F4008船用系统油中,在摩擦磨损试验机上研究其减摩抗磨性能。结果表明,所制备的纳米镍粒子为面心立方结构,其平均粒径分别为40nm,在润滑油中具有良好的分散性能;纳米镍粒子在较高载荷下减摩抗磨效果明显,具有较好的填充修复犁沟的作用。  相似文献   

19.
在W/O微乳液体系下,采用TritonX-100作非离子表面活性剂,正丁醇作助表面活性剂、环己烷作油相,正硅酸乙酯为硅源、氨水为催化剂制备了纳米球形SiO2粒子。通过正交试验,采用L9(33)正交表,并运用正交设计的极差分析、方差分析确定各主要原料对制备球形纳米SiO2的影响,找出了对粒径影响显著的因素。实验结果表明:水和表面活性剂摩尔比对粒径影响最显著,并随之增大而增大;正硅酸乙酯浓度、氨水浓度增大,SiO2粒径也随之增大,但影响不显著。实验制取的SiO2粒子粒径在40-120 nm,单分散性好,粒度窄,球形率高。  相似文献   

20.
为了研究纳米颗粒对基础油液热导率的影响,在基础油蓖麻油酸中加入不同体积分数和粒径的纳米金刚石颗粒,采用LAMMPS和分子动力学的研究方法,对粒子数密度以及粒子的径向分布规律、导热系数进行研究。结果表明:加入纳米颗粒的纳米流体的热物理性质受到多方面的影响,其中包括纳米颗粒体积分数及粒径等;随纳米粒子体积分数的提高纳米流体的热导率呈近似线性增加,随着纳米粒子粒径的减小,纳米粒子润滑膜的承载能力增强。纳米润滑膜能承受很高的外界冲击力,这有助于减小两作用面之间的摩擦,减小表面磨损;加入纳米颗粒的润滑油会减小摩擦副之间的摩擦和增强散热,提高热导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号