首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究铜纳米粒子对蓖麻油酸基础流体热导率提升的作用机制,基于分子动力学模拟(MD)方法,以铜纳米粒子直径、添加量、形状、布朗运动及系统温度为变量,对纳米流体热导率的影响机制进行研究。结果表明:纳米粒子的布朗运动会提高纳米流体的热导率;纳米铜(Cu)的加入改变了蓖麻油酸基流体的部分区域密度,产生的液体吸附层对基础流体导热性有阻碍作用;纳米流体的热导率随纳米粒子直径、添加量、系统温度的增加而增加;当纳米粒子体积相同时,表面积大的形状会提高热导率。  相似文献   

2.
铝合金表面Ni-SiC复合镀层的摩擦磨损性能   总被引:3,自引:0,他引:3  
通过复合电沉积技术,在铝合金表面得到了不同SiC粒子含量的Ni-SiC复合镀层,研究了在干摩擦和液态石蜡润滑摩擦条件下载荷与SiC粒子体积分数对Ni-SiC复合镀层摩擦磨损性能的影响。结果表明:无论在干摩擦或润滑摩擦条件下,加入SiC粒子后的复合镀层其耐磨性均优于纯镍镀层,并随载荷的提高耐磨性下降。在干摩擦条件下,镀层中的SiC粒子体积分数在5.8%时复合镀层耐磨性最好;在润滑摩擦条件下,随镀层中SiC粒子体积分数提高,复合镀层耐磨性均提高。  相似文献   

3.
纳米Sn粒子的制备及其作润滑油添加剂的摩擦学性能研究   总被引:3,自引:0,他引:3  
赵修臣  宣瑜  刘颖  张弛 《润滑与密封》2007,32(1):108-110
用化学还原法制备了表面经油酸修饰的纳米Sn粒子,并在透射电镜(TEM)下观测到所制备的纳米Sn粒子呈球形、平均粒径为20 nm。在MSR-10D四球摩擦磨损试验机上考察了纳米Sn粒子作为CF-4 15W/40润滑油添加剂的摩擦学性能,并在扫描电子显微镜(SEM)和能谱分析仪(EDS)上对钢球磨斑表面进行了形貌观测和表层成分分析。试验结果表明,纳米Sn粒子作为润滑油添加剂具有一定的减摩性能和较好的抗磨性能,当所添加的体积分数仅为0.1%时,添加纳米Sn粒子润滑油的摩擦力比基础油降低了16.64%,其磨斑直径比基础油减小了38.4%。分析认为,纳米Sn粒子通过隔离摩擦表面而改善了润滑油的减摩抗磨性能。  相似文献   

4.
MnZnFe2O4纳米磁性颗粒对薄膜润滑性能的影响   总被引:1,自引:0,他引:1  
MnZnFe2O4纳米磁性颗粒由于同时具备磁性和纳米尺寸,作为润滑油添加剂会对纳米级油膜的润滑特性和成膜机理有极大的影响.采用共沉淀法制备MnZnFe2O4纳米磁性颗粒,对其粒径分布和磁性能进行检测,加入基础油中获取分布均匀的润滑油,检测润滑油粘度.同时采用纳米膜厚测量仪,研究不同质量分数下纳米磁性颗粒对于薄膜润滑性能的影响.研究表明,不同质量分数对润滑油粘度影响不同,且润滑油在不同卷吸速度下的膜厚、中心膜厚形态、流动性与粘度无关,而与质量分数直接相关.指出油酸包覆的纳米磁性颗粒之间存在决定分散和团聚的极限间距,当润滑间隙减小到磁力矩作用范围时,在分子作用力、附加磁力矩共同作用下,磁性颗粒和润滑油分子共同形成吸附层,并达到有序排列,形成强度更高的、更稳定、更厚的薄膜润滑.  相似文献   

5.
为改善低黏度润滑油的摩擦磨损性能和成膜性能,选用纳米TiO2为添加剂,低黏度的聚α烯烃(PAO8、PAO10)和聚醚(PAG)作为基础油,在四球式摩擦磨损实验机上考察纳米TiO2添加剂对润滑油摩擦磨损性能的影响,利用点接触光弹流润滑试验台,研究不同速度、载荷下和纳米TiO2添加量对润滑油成膜性能的影响。结果表明:加入一定质量分数的纳米TiO2添加剂能够明显提高润滑油的抗磨减摩性能,在PAO8、PAG和PAO10基础油中分别加入质量分数0. 3%、0. 05%和0. 3%的纳米TiO2时,摩擦因数和磨斑直径均最小;综合比较摩擦因数和磨斑直径,纳米TiO2在PAO8基础油中表现出最好的抗磨减摩性能,摩擦因数减小了约54. 5%,磨斑直径降低了约10. 4%;随着卷吸速度的增加,润滑油的最小膜厚也逐渐增加,在相同卷吸速度下,与纯基础油相比,添加一定质量分数纳米TiO2添加剂的最小膜厚明显增加;随着纳米TiO2粒子添加量...  相似文献   

6.
以化学还原法从电镀铜废液中回收的纳米铜粉为固体润滑油添加剂,在四球式摩擦磨损试验机上研究纳米铜粉的加入量对润滑油摩擦学性能的影响。采用SEM、EDAX等分析磨斑表面,初步探讨纳米铜粉抗磨减摩机制。结果表明:纳米铜粉的添加显著提高基础油的抗磨减摩性能,当纳米铜粉加入量为0.3%(质量分数)时,其摩擦因数和磨斑直径分别比基础油减小33.4%和19%。含纳米铜粉润滑油在高载荷下具有更好的抗磨减摩性能。纳米铜粉在摩擦过程中抗磨减摩机制主要为填充作用和沉积自修复膜作用机制。  相似文献   

7.
张文琼  方亮  谢天 《润滑与密封》2021,46(8):108-114
搅拌法制备SiC颗粒增强铝基复合材料时铺粉工艺对材料性能影响很大,影响SiC颗粒能否均匀地嵌入基体中。研究黏接剂、SiC颗粒粒径、颗粒铺粉厚度等对搅拌摩擦制备SiC颗粒增强铝基复合材料的影响。以焊缝宏观质量、SiC颗粒体积分数与硬度、基体组织及颗粒、复合材料不同深度维氏硬度、复合区面积(宏观)为表征参量对制备的复合材料进行表征,并得出最佳的铺粉工艺。结果表明:相比于α-氰基丙烯酸乙酯,聚乙烯醇作为黏接剂时,复合材料中SiC颗粒的分布更加均匀;嵌入基体的SiC颗粒体积分数随着SiC粉末粒径的增加而增加,而基体中SiC颗粒体积分数相同情况下,SiC颗粒的粒径越小对基体材料硬度的提高越明显;复合材料中SiC颗粒增强区面积会随着铺粉厚度的增加而增加,但增加铺粉厚度会使得SiC颗粒增强区硬度、体积分数的变化梯度增加。  相似文献   

8.
对含纳米金刚石颗粒的机油添加剂进行了摩擦磨损性能的试验研究。结果表明,含纳米金刚石颗粒添加剂的润滑油与基础油相比,具有良好的摩擦学性能。在基础油中,加入纳米金刚石机油油精,可以提高润滑剂的抗磨性能、减摩性能、承载能力。通过添加剂的物理性质分析、摩擦学性能分析及润滑剂的理化性能分析等,验证了含纳米金刚石颗粒添加剂摩擦磨损性能的影响机理,即表面的吸附、滚珠和自润滑的特性。  相似文献   

9.
添加纳米Fe3O4 润滑剂磨损性能试验研究   总被引:6,自引:0,他引:6  
采用化学共沉淀发制备了纳米级铁磁流体润滑剂,利用MMW-1万能摩擦磨损试验机,测定了添加纳米Fe3O4润滑剂在不同速度、添加量和载荷下的摩擦学性能,并对减摩抗磨机制进行了研究。结果表明,添加纳米Fe3O4粒子的润滑油表现出了良好的抗磨减摩性能,并能够显著改善基础油的承载能力,最大可以提高16.5%。其减摩抗磨机制为,由于纳米微粒大多为球状,能起到类似“球轴承”的作用,从而提高润滑性能;另外,由于纳米颗粒的增粘作用,从而提高承载能力。  相似文献   

10.
以硝酸铜为原料,在100SN,150SN,500SN 3种润滑油基础油微乳液体系中使用原位液相直接制备纳米铜润滑油,使用扫描电镜(SEM)表征制备的纳米铜的表面形貌,使用四球摩擦磨损试验机考察制备的纳米铜润滑油的减摩抗磨和极压性能.结果表明:原位制备的纳米铜颗粒的粒径在20-50 nm之间.在100SN基础油中原位制备的纳米铜润滑油具有较高的承载能力和良好的减摩抗磨性能,可使基础油的最大无卡咬负荷增大27%,在392 N,1 450 r/min条件下,可使基础油的摩擦因数、磨斑直径分别减小3.8%,20%.而在150SN,500SN基础油中原位制备后的纳米铜对润滑油的承载能力没有明显的影响.  相似文献   

11.
在缸套-活塞环摩擦副中,当活塞在上、下止点处为零速,难以形成油膜,且在气缸的高温工况下,其他部位的油膜也会被破坏,从而造成缸套-活塞环的摩擦功耗增加和磨损加剧。采用优质润滑油是提高缸套-活塞环润滑与摩擦特性的重要手段。制备改性纳米六方氮化硼(h-BN)颗粒并将其按不同质量分数分散至聚α-烯烃(PAO10)基础油中,使用R-tec摩擦磨损试验机开展不同载荷下的往复摩擦试验,通过观测摩擦因数、磨损体积和缸套磨损表面、磨损元素及三维形貌参数,研究改性纳米h-BN添加剂对缸套材料摩擦学性能的影响以及减摩抗磨润滑机制。结果表明:加入改性纳米h-BN添加剂可以显著降低缸套-活塞环摩擦副的摩擦因数,减少磨损量,加入质量分数0.25%的添加剂在50 N、3 Hz工况下可使摩擦因数降低33.87%,磨损体积降低23.32%;在载荷及摩擦热作用下纳米h-BN添加剂可以在磨损表面形成摩擦保护膜,可以改善缸套的表面粗糙度,创造优良的润滑环境,提升其摩擦学性能。  相似文献   

12.
用双螺杆挤出机制备了纳米氧化铝改性聚甲醛材料,研究了纳米粒子在基体中的分散状态、复合材料的力学性能及摩擦磨损性能.结果表明:纳米粒子在基体中基本达到了纳米级的分散;纳米氧化铝的加入使材料变脆,但刚性增强,聚甲醛纳米复合材料的干摩擦性能降低,磨损的主要机理为磨粒磨损,聚甲醛纳米复合材料的油摩擦性能得到了显著提高.  相似文献   

13.
采用XRD、TEM等手段对利用沉淀法制备的纳米CeO2粉体结构特征和形貌进行了表征,并考察了焙烧温度对纳米CeO2颗粒体形貌及对500SN基础油摩擦性能的影响。结果表明:焙烧温度低于400℃制备的纳米CeO2粉体能降低500SN基础油的摩擦因数;而高于600℃焙烧的纳米CeO2粉体将会增大其摩擦因数和磨斑直径;焙烧温度越高,纳米CeO2颗粒的晶体结构越完整,且颗粒由近球形变为不规则的多面体,存在着尖锐的边角,导致了摩擦性能的降低;焙烧温度较低时,颗粒表面非晶成分的存在有利于提高基础油的摩擦性能。  相似文献   

14.
以纳米WS_2和TiN为添加剂,研究不同纳米材料及含量对基础油500SN减摩抗磨性能的影响。试验结果显示,在添加纳米材料后,润滑油的减摩抗磨性能有了明显提升,磨损类型也发生了明显的改变,其中在添加纳米TiN后的磨损类型由磨粒磨损变为黏着磨损,在添加纳米WS_2变为黏着磨损与磨粒磨损共存;随着纳米粒子质量分数的增加,润滑油的减摩抗磨特性先提升后下降,其中0.3%质量分数的纳米TiN的减摩抗磨效果最好,相比基础油,可以使摩擦因数下降5%~8%,磨斑直径下降26%~32%。  相似文献   

15.
为提高耐蚀水泵磁流体旋转密封的承压值,在Fe3O4油基磁流体中添加适量强磁性Co微米粒子,并研究磁流体中Co粒子体积分数对磁流体密封水性能和磁流体密封装置温升的影响。研究结果表明,随着磁流体中Co粒子体积分数增加,因Co粒子在密封间隙内密封极齿表面聚积形成的“柔性磁极”,导致密封间隙减小,磁流体密封承压值明显增大;随着磁流体中Co粒子体积分数的增加,磁流体密封的功耗将增大,磁流体密封装置的温度升高;磁流体密封装置的温升缘于密封间隙内Co粒子之间和Co粒子与旋转轴之间内摩擦所产生的摩擦热。  相似文献   

16.
赵修臣  刘颖  王富耻 《润滑与密封》2005,(2):103-104,121
利用化学共沉淀法制备了平均粒径为10nm、油酸表面修饰的Fe3O4粒子,并对其作为润滑油添加剂的摩擦学性能进行了研究。试验结果表明,添加油酸修饰的纳米Fe3O4粒子的润滑油表现出了较好的抗磨减摩性能,但是,纳米粒子的添加量有一最佳值。与基础油相比,添加纳米Fe3O4粒子润滑油的摩擦因数最大降低了26%,磨损量降低了28%。在摩擦磨损过程中,添加纳米Fe3O4粒子润滑油的摩擦力矩的变化表现出了时间效应。添加纳米Fe3O4粒子润滑油摩擦磨损后的磨痕表面比基础油摩擦磨损后的磨痕表面光滑,可以推测,纳米Fe3O4粒子对摩擦表面的抛光作用提高了润滑油的摩擦学性能。  相似文献   

17.
纳米减摩修复添加剂摩擦学性能的试验研究   总被引:1,自引:2,他引:1  
在MRH-3高速环块摩擦磨损实验机上,研究了纳米微粒Cu,A l,A l2O3以及不同配比的混合纳米粒子加入到SD40基础油中的摩擦学性能,并探讨了纳米添加剂的减摩机制。结果表明:含有纳米Cu,A l,A l2O3粒子的润滑油添加剂能显著提高SD40基础油的承载能力和减摩性能,且对表面具有一定的修复能力。  相似文献   

18.
采用聚异丁烯丁二酰亚胺T152/S-80复合表面活性剂(w(Span80)∶w(Tween20)=2∶3(质量比))/异丁醇/500SN基础油/氟化铵水溶液W/O微乳液体系构建微反应器,通过原位表面修饰制备了含纳米LaF3粒子的液体润滑油添加剂,同时,采用洗涤法制备了干粉纳米LaF3。采用X-射线衍射仪(XRD)和透射电镜(TEM)分析了纳米LaF3粒子的结构和形貌。分别将液体添加剂和干粉加入基础油中,采用离心沉降法考察了不同后续分离方法得到的纳米粒子在基础油中的分散稳定性,用四球机考察了它们的摩擦学性能,最后采用扫描电子显微镜(SEM)观察了磨斑表面形貌。结果表明:所构建的微反应器制备的颗粒状纳米LaF3平均粒径在10~15 nm之间;纳米粒子在基础油中的分散稳定性对其摩擦学性能影响很大,液体添加剂中的纳米粒子在基础油中的分散稳定性和摩擦学性能大大高于干粉粒子;液体添加剂中的表面活性剂不仅有利于纳米粒子在基础油中的稳定分散而且有减摩作用。  相似文献   

19.
将KH550偶联剂修饰的纳米蒙脱石(MMT)按不同质量分数加入150N基础油中,制备质量分数1%~5%的5种纳米MMT润滑油体系,采用MMU-10G摩擦磨损试验机考察纳米MMT对45#钢摩擦副减摩抗磨性能的影响,采用SEM和EDX等分析试样形貌与表面元素成分的变化,分析影响摩擦学性能的机制。结果表明:质量分数3%的纳米MMT润滑油和具有最好的抗磨减摩性能,相对于基础油润滑体系,可使金属摩擦副磨损失重量最小降低45.5%;所有试样表面均形成了以MMT特征元素和Fe元素为主体组成的自修复膜层,使试样磨损损失获得补偿,其中质量分数3%的纳米MMT润滑油润滑时摩擦副表面MMT特征元素的含量最高,故试样磨损率最小;纳米MMT润滑体系润滑时的摩擦因数均低于纯基础油,但是不同含量的纳米MMT对改善45#钢摩擦副的减摩性没有明显的区别。  相似文献   

20.
搅拌摩擦加工镁合金摩擦磨损性能研究   总被引:2,自引:0,他引:2  
采用搅拌摩擦加工技术(Friction Stir Processing,简称FSP)对AZ31镁合金进行了表面改性,分别实验了加入纳米SiC粒子的FSP试样和没有加入粒子的FSP试样的摩擦磨损行为.研究结果表明:加入纳米SiC粒子的FSP试样的表面硬度明显高于没有加入粒子的FSP试样的表面硬度;由于纳米SiC粒子的加入,显著细化了镁合金基体的晶粒尺寸,与未加入粒子的FSP试样相比,加入纳米SiC粒子的FSP试样表现出更好的耐摩擦磨损性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号