首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
河鲫鱼在不同贮藏温度下的货架期模型预测   总被引:2,自引:0,他引:2  
为了研究河鲫鱼在物流过程中的品质变化与货架期预测模型,将河鲫鱼分别贮藏在273、279、282、285、291K条件下,测定了河鲫鱼的感官指标、挥发性盐基氮(TVB-N)、菌落总数(TVC)、脂肪氧化(TBA)和鲜度指标K值随贮藏时间的变化规律。通过相应的品质能级函数分析,确定零级化学反应动力学更适合表现河鲫鱼各指标品质变化规律。利用Arrhenius方程对活化能Ea,A0和温度进行非线性拟合,得到TVB-N、TVC、TBA和K值的活化能(Ea)和指前因子(A0)分别为:77.68kJ/mol和4.590×1014、99.64kJ/mol和1.790×1018、83.78kJ/mol和1.146×1014、104.4kJ/mol和2.219×1020。结果表明:河鲫鱼的感官品质指标随着贮藏时间的延长而不断下降,且随着贮藏温度的升高而下将迅速,TVB-N、TVC、TBA及K值随着贮藏时间的延长而增加,温度越高各指标变化越快,且贮藏后期更快。用河鲫鱼贮藏在282K下的货架期实测值来验证建立的货架期预测模型,实验结果证明该模型所获得的货架期预测值相对误差达到±5%以内。因此可根据TVB-N、TVC、TBA和K值在273~291K范围内,对河鲫鱼的新鲜度和剩余货架期进行预测,同时也为其他水产品货架期的预测提供了一定的参考。  相似文献   

2.
冷却猪肉贮存中的品质变化及货架期预测   总被引:5,自引:3,他引:2       下载免费PDF全文
本文研究了不同贮藏温度下冷却猪肉的品质变化,运用因子分析法,结合Q10模型,建立货架期预测模型。在0、5、10、15、20 ℃贮藏环境中,以感官品质、菌落总数、TVB-N、TBARS、pH值、色值(L*、a*、b*)为品质评价指标,找出反应多种理化指标的主成分因子。且进行理化因子与感官品质皮尔逊积聚相关性分析,通过感官品质货架终点获得理化因子的限值,建立冷却猪肉货架期预测模型。研究结果表明:在不同贮藏温度下冷却猪肉的菌落总数、TVB-N值、pH值、TBA、色值(b*)呈上升趋势值随着贮藏时间的延长而增加;其感官品质、色值(a*)随着贮藏时间的延长而呈下降趋势;且贮藏温度越高各项指标变化越快。在4、12℃贮藏条件下对冷却猪肉品质预测模型进行验证,相对误差均在±10%之内。验证试验表明,所建模型适用于冷却猪肉货架期预测。  相似文献   

3.
不同贮藏温度下冷却猪肉货架期预测模型的构建   总被引:2,自引:0,他引:2  
董庆利  曾静  熊成  余华星  梁娜  胡梦涵  潘燕 《食品科学》2012,33(20):304-308
建立冷却猪肉中特定腐败菌的货架期预测模型。将气单胞菌接种到经80℃无菌水灭菌的猪精腿肉中,分别密封包装于0、4、7、15℃和20℃温度贮藏,测定各温度下接种猪肉的菌落总数(N)、pH值、TVBN值、TBA值,并进行感官评分。采用Origin 8.0分析软件对数据进行处理,结果表明:修正的Gompertz方程能较好地拟合不同温度下气单胞菌的生长动态,应用平方根模型(B lehrádek)描述温度对最大比生长速率(μmax)和迟滞期(Lag)的影响,均表现出良好的线性关系,R2分别为0.93和0.95。猪肉在0、4、7、15℃和20℃温度下气单胞菌的感官货架期终点菌数对数平均值为(6.33±0.14)(lg(CFU/g)),平均最大菌数对数为(7.36±0.21)(lg(CFU/g)),得到在0~20℃贮藏温度下冷却猪肉的货架期预测模型为SL=[1/(0.026T-0.00048)2]-[(7.36-lgN0)/2.718×(0.0102T+0.148)2]×{ln[-ln(6.33-lgN0)/(7.36-lgN0)]-1}。通过8℃和12℃贮藏温度下冷却猪肉的货架期实测值对构建的预测模型进行验证,相对误差均小于10%,表明建立的模型可以有效地预测冷却猪肉在0~20℃贮藏温度下的货架期。  相似文献   

4.
目的建立市售简易包装牡蛎干货架期预测模型。方法对简易密封包装牡蛎干酸价、过氧化值、挥发性盐基氮(total volatile basic nitrogen,TVB-N)值3个指标随贮藏时间和温度变化情况进行测试和分析。结果牡蛎干在不同贮藏温度下,随着贮藏时间的延长品质逐渐下降,温度越低,品质衰败速率越缓慢,符合一级反应动力学模型,并根据Arrhenius理论公式建立了不同指标的货架期预测方程。经计算得出酸价、过氧化值、TVB-N值预测模型中的活化能分别为46.85、49.89、46.79 kJ/mol;指前因子k_0分别为7.80×10~5、2.77×10~6、9.54×10~5。结论本研究建立了市场流通中货架期的评估模型,并按照GB/T 26940-2011《牡蛎干》标准要求,以TVB-N值为判断指标,经25℃和40℃对照存放实验验证预测模型预测相对偏差分别为6.51%和2.41%。  相似文献   

5.
本文采用挥发性盐基氮(TVB-N)为低盐虾酱的品质变化和货架寿命的指示指标,根据感官评定结果和SB/T 10525-2009,确定TVB-N值4.50 mg/g为货架寿命终点。建立TVB-N与贮藏时间(t)之间的一级动力学方程和TVB-N变化速率常数(k)与贮藏温度(T)之间的Arrhenius方程,以预测在某一贮藏温度下低盐虾酱的货架寿命理论值。求得Arrhenius方程中TVB-N变化反应的活化能Ea为63.69 kJ/moL,指前因子k0为2.76×109,TVB-N的变化速率常数k为2.76×109e-63690/RT。分别在15℃、30℃和37℃条件下验证动力学模型的准确性,得到货架寿命预测值与实际值的相对误差分别为9.79%、7.00%和-6.54%。进一步通过Arrhenius方程外推法求得低盐虾酱在23℃和27℃条件下保藏的理论货架寿命分别为155.8 d和107.2 d,预测结果与实际值之间能较好地符合。  相似文献   

6.
酱卤鸡肉货架期预测的研究   总被引:4,自引:0,他引:4  
利用Arrhenius方程,以国标中用于评价肉质鲜度的唯一理化指标TVB-N为指示指标,建立预测酱卤鸡肉货架期的动力学模型。根据TVB-N值和贮藏时间的关系,得出活化能Ea和指前因子k0分别为16.254kJ/mol、31.125,推导出TVB-N变化速率常数k与贮藏温度(T)之间的Arrhenius方程。根据方程A=A0exp(kt),A终点TVB-N值为20mg/100g,能够预测一定贮藏温度下酱卤鸡肉的货架期。分别取4、10、16℃作为验证温度,结果表明:误差分别为3.71%、3.25%、5.45%,预测值与真实值之间能较好地符合。另外检测了贮藏期间样品的水分含量、pH、色泽和微生物的变化情况,水分含量、pH和色泽三者均呈现总的下降趋势,微生物数量随贮藏时间的延长而增加。  相似文献   

7.
动力学模型预测真空包装罗非鱼的货架期   总被引:1,自引:0,他引:1  
以真空包装罗非鱼为研究对象,通过不同温度(273、277、283K)下贮藏实验构建了真空包装罗非鱼的货架期预测模型。测定不同温度下真空包装罗非鱼的菌落总数、挥发性盐基氮(TVB-N)和脂肪氧化(TBA)值的变化,用Arrhenius方程建立了真空包装罗非鱼的品质变化与时间的动力学模型。菌落总数、TVB-N值和TBA值变化预测模型中的活化能(EA)和速率常数k0分别为53.5kJ/mol和4.390×108,25.9kJ/mol和8.96×103,29.3kJ/mol和4.92×104。验证结果表明:货架期模型预测值与实际值相对误差在±10%之内,可以在273~283K内,根据菌落总数、TVB-N值以及TBA值对真空包装罗非鱼的货架期进行预测。  相似文献   

8.
马妍  谢晶  周然  刘源 《食品工业科技》2012,33(6):390-393,408
为了研究河豚鱼在冷链流通中的品质变化与货架期,通过不同温度下的贮藏实验研究了河豚鱼的货架期预测模型。将河豚鱼贮藏在273、277和281K条件下,测定了河豚鱼的总菌落数、总挥发性盐基氮(TVB-N)、脂肪氧化(TBA)值和三甲胺值的变化。在Arrhenius动力学方程基础之上,建立了菌落总数、挥发性盐基氮、脂肪氧化(TBA)值和三甲胺值与贮藏时间及贮藏温度之间的动力学模型。实验表明一级化学反应动力学模型和Arrhenius方程对菌落总数、挥发性盐基氮(TVB-N)、脂肪氧化(TBA)值及三甲胺值的变化具有较高的拟合精度。各项指标(菌落总数、挥发性盐基氮、TBA值以及三甲胺)变化预测模型中的活化能(EA)及速率常数(k0)分别为:21.10kJ/mol和1.059×103,76.58kJ/mol和2.888×1013,6.59kJ/mol和4.012,18.35kJ/mol和1.393×103。结果表明:河豚鱼的总菌落数、挥发性盐基氮(TVB-N)、脂肪氧化(TBA)值及三甲胺值随着贮藏时间的延长而增加,且随着贮藏温度的升高而迅速增加。该实验建立的河豚鱼货架期预测模型所获得货架期预测值准确率达到±10%以内,可根据菌落总数和TVB-N值在273~281K范围内,对河豚鱼的剩余货架期进行预测。  相似文献   

9.
本文分析了罗非鱼片在-18℃、-14℃和-10℃条件下贮藏的感官、微生物和理化等指标变化,从中选择一个敏感指标用于货架期预测模型的建立。结果显示,随着贮藏时间的延长,冻罗非鱼片的菌落总数对数值缓慢增长,在120 d时分别达到4.31log(CFU/g)、4.76 log(CFU/g)和5.47 log(CFU/g),均未达到国家规定的冻罗非鱼片菌落总数上限值。TVB-N值呈线性上升,分别在60d、80 d和120 d降至二级鲜度13 mg/100 g;TBA值逐渐升高,但各实验组间反应速率差异不显著。冻罗非鱼片的感官评分逐渐下降,但在贮藏末期仍保持着较好的感官品质。随贮藏温度越低,品质指标衰变越缓慢。运用Pearson相关系数对各品质指标进行分析,确定敏感指标为TVB-N,结合拟合优度分析结果判断TVB-N指标的变化符合零级反应。应用Arrhenius方程构建贮藏温度(T)与反应速率(ka)间的动力学方程,并以此为基础,推导得到恒定冷链温度条件下冻罗非鱼片货架期预测模型。在-10℃和-14℃下评价货架期预测模型可靠性,能够准确预测冻罗非鱼片的品质随温度的变化情况。  相似文献   

10.
将酒糟鱿鱼贮藏在0、4℃、20℃、30℃、40℃条件下,测定了其总菌落数、挥发性盐基总氮(TVB-N)与感官品质指标的变化。在Arrhenius动力学方程基础之上,建立动力学模型。结果表明,菌落总数变化预测模型中的活化能(EA)及速率常数(k0)分别为:71.26 kJ/mol和3.987×1013,挥发性盐基氮变化的活化能(EA)及速率常数(k0)分别为:68.86 kJ/mol和2.159×1012。酒糟鱿鱼的总菌落数、挥发性盐基总氮随着贮藏时间的延长而增加,其感官品质指标随着贮藏时间的延长而下降。该试验建立的酒糟鱿鱼货架期预测模型准确率达到±10%以内。  相似文献   

11.
乳源抗菌肽复合生物保鲜剂对冷却牛肉货架期的影响   总被引:1,自引:0,他引:1  
为延长冷却牛肉货架期并建立货架期预测模型,选取乳源抗菌肽、壳聚糖、乳酸链球菌素(Nisin)、茶多酚和丁香精油5 种天然保鲜剂,通过U16(84)均匀试验,以挥发性盐基氮(total volatile basic nitrogen,TVB-N)含量、pH值和菌落总数为指标进行分析,确定保鲜剂的适宜添加量为壳聚糖22.5 g/L、Nisin 0.15 g/L、乳源抗菌肽9.7 g/L、茶多酚1.5 g/L、丁香精油13.0 g/L,(4±1)℃条件下冷却牛肉货架期比空白组延长了25 d以上。对于冷却牛肉TVB-N含量,乳源抗菌肽与Nisin、茶多酚、丁香精油之间及Nisin与茶多酚之间具有极显著的交互影响(P<0.01),丁香精油与Nisin之间具有显著的交互作用(P<0.05)。用复合天然保鲜剂处理后的冷却牛肉在-1、2、6 ℃条件下贮藏,运用Arrhenius方程拟合温度对冷却牛肉菌落总数的影响,结果显示不同温度下决定系数R2均大于0.91,货架期预测模型为SL=2.75×10-9×exp(6 567.2/T)。贮藏温度分别为2、4 ℃和6 ℃时,冷却牛肉的实际货架期分别为61、53 d和47 d,与货架期预测值相比,相对误差均在6%以内,表明建立的模型可以有效预测冷却牛肉在-1~6 ℃贮藏条件下的货架期。  相似文献   

12.
研究通过对于安康鱼鱼片在30℃、35℃和40℃贮藏条件下的酸价、过氧化值以及菌落总数变化进行测定,利用一级化学反应动力学模型和Arrhenius方程进行货架期模型的建立,从而预测出安康鱼鱼片在不同保藏温度下的货架期。经过计算得出,酸价、过氧化值以及菌落总数预测模型中对应的指前因子k0分别为1.05×106,4.91×106和1.30×103,活化能Ea分别为49.45 k J/mol,52.70 k J/mol和31.98 k J/mol。在25℃,36℃和41℃温度下贮藏验证动力学模型,预测值与实测值的相对误差分别为0.25%,1.74%和3.54%,两者的吻合度较高。另外,根据得出的货架期预测模型预测在30℃,35℃和40℃贮藏条件下,安康鱼鱼片的货架期分别为253,180和129 d。  相似文献   

13.
花生仁与核桃仁贮藏货架期预测模型   总被引:1,自引:0,他引:1  
任斯忱  李汴生  申晓曦  阮征 《食品科学》2012,33(14):290-295
采用加速贮藏试验,研究花生仁与核桃仁贮藏中脂肪氧化的动力学及其货架期预测模型。花生仁和核桃仁分别采用真空和露空两种贮藏方式贮藏于0~50℃。以过氧化值(POV)为指标,通过对不同温度下POV的测定,建立了POV与贮藏时间(t)的一级反应动力学方程以及反应速率(k)与贮藏温度(T)的Arrhenius方程;低温和真空贮藏时,氧化反应的活化能(EA)明显升高,证明低温和真空条件可延缓果仁的氧化酸败;两种贮藏方式下,核桃仁反应活化能(EA)均小于花生仁EA,表明核桃仁氧化稳定性低于花生仁。两种果仁的一级化学反应动力学模型和Arrhenius方程均具有较高的拟合精度(R2>0.95),建立的模型对货架期的预测值与实测值接近(RE<10%),表明论文得到的预测模型可快速准确的预测0~50℃条件下花生仁与核桃仁贮藏的货架期。  相似文献   

14.
通过对比分析4℃恒温和0~4℃波动温度贮藏过程中冷却猪肉感官、理化和微生物指标的变化,揭示波动温度对猪肉品质劣变速率和货架期的影响。研究表明:4℃恒温和0~4℃波温贮藏的冷却猪肉各品质指标存在不同的劣变速率,通过T检验和相关分析表明,恒温和波温的品质指标差异显著(P<0.05),波动温度会降低品质指标的相关性。通过已有的猪肉货架期模型进行预测和验证,表明已有模型不能很好地预测波动温度的货架期,需进行补充或修正。该研究结果为今后开发波动温度货架期预测模型提供数据基础和理论依据,为指导猪肉适宜的冷藏模式和温度调控提供参考。  相似文献   

15.
为探究鹰爪虾在不同温度贮藏过程中的鲜度变化,实时监测物流期间的货架期,将鹰爪虾贮藏在-30,-18,0,4℃条件下,测定其K值、挥发性盐基氮(TVB-N)值与菌落总数(TVC),研究其货架期预测模型。结果表明:随着贮藏温度的降低,鹰爪虾的鲜度指标下降速率减慢,货架期延长,且不同温度组对鹰爪虾的鲜度指标有较大影响。采用Arrhenius方程构建贮藏温度、贮藏时间与K值、TVB-N值和菌落总数间的动力学模型,将其与食品TTT理论相结合,结果表明各项鲜度指标的拟合度较好(R~20.9),鹰爪虾的变温货架期预测模型对其剩余货架期的预测准确率较高,预测值与实测值的相对误差的绝对值不超过5%,说明基于鲜度指标建立的动力学模型可用于鹰爪虾变温冷链物流过程中剩余货架期的预测。  相似文献   

16.
以经无菌灌装系统制成的PET(Polyethylene terephthalate)瓶装香蕉牛乳为研究对象,对贮藏在4℃、常温(12℃)、37℃和55℃条件下香蕉牛乳的感官品质、蛋白水解度、脂质氧化程度、酸度、p H值、脂肪上浮率的变化规律进行分析,并在Arrhenius方程基础上,建立了酸度与贮藏温度之间的动力学模型。研究结果表明,以酸度作为指标建立的动力学模型预测PET瓶装香蕉牛乳的货架期,模型的活化能(E)和回归系数(K_0)分别为16843.3 J/mol和6.3465。由此推导出酸度变化速率常数与贮藏温度(T)之间的方程K=1.8479e~(-16843.3/RT),根据酸度终点值得出其货架期预测模型方程:t=ln(N/N_0)×e~((2025.9/T-1.8479))。通过不同温度下样品的货架期实测值对预测模型进行验证,相对误差均小于5%,表明该模型可有效预测PET瓶装香蕉牛乳在(4~55)℃贮藏温度下的货架期。  相似文献   

17.
不同贮藏温度条件下鲐鱼货架期预测模型的构建   总被引:2,自引:0,他引:2  
为了探索海上移动运输船上东海鲐鱼新鲜度随温度变化规律及其动力学特性,将鲐鱼贮藏在0、5、10、15 ℃条件下,测定K值、挥发性盐基氮(total volatile base nitrogen,TVB-N)值与菌落总数(total viable count,TVC),并进行感官评分,研究其货架期预测模型。结果显示,随贮藏时间的延长,鲐鱼的感官品质指标逐渐下降,K值、TVB-N值和TVC均逐渐上升。实验用Arrhenius方程构建了贮藏温度、贮藏时间与K值、TVB-N值和TVC之间的动力学模型,其中,K值变化的活化能(Ea)及速率常数(k0)分别为30.54 kJ/mol和1.54×104;TVB-N变化的Ea及k0分别为41.21 kJ/mol和4.40×105;TVC变化的Ea及k0分别为46.78 kJ/mol 和2.93×106。建立的动力学模型可以在0~15 ℃范围内对鲐鱼的货架期进行准确预测。  相似文献   

18.
为实时监测冷却牛肉贮藏期间的品质变化与货架期,分别测定冷却牛肉0、4、7、10 ℃贮藏过程中假单胞菌菌数、总挥发性盐基氮含量和感官评分。利用修正的Gompertz方程建立不同贮藏温度下假单胞菌生长的动力学模型,以Belehradek方程为二级模型,描述贮藏温度对假单胞菌生长的影响,并利用2、5、8 ℃条件下贮藏的冷却牛肉验证货架期预测模型的准确性。结果表明:所建立的Gompertz模型拟合相关系数均在0.99以上,预测结果准确度在1.013~1.126之间,偏差度在0.926~1.057之间,贮藏温度与μmax 1/2和(1/λ)1/2均呈良好的线性关系,说明建立的一级和二级模型能够真实、有效地预测0~10 ℃贮藏条件下冷却牛肉中假单胞菌的生长情况;货架期的预测值与实测值相对误差在±10%以内,该货架期模型可有效预测冷却牛肉在0~10 ℃贮藏条件下任意温度下的货架期。  相似文献   

19.
电子鼻在冷却肉货架期预测模型中的应用   总被引:2,自引:1,他引:1  
利用电子鼻分析了猪肉在不同贮藏温度与贮藏时间下的挥发性成分变化,利用主成分分析(PCA)与货架期(SL)分析的方法,预测猪肉的货架期.将电子鼻SL分析获得的依据猪肉气味变化判定的货架期与理化指标(挥发性盐基氮值)分析相结合,建立猪肉的货架期预测模型.实验结果表明,不同贮藏温度条件下猪肉的菌落总数值与TVBN值均随着贮藏时间的延长而呈现上升的趋势,且均符合一级化学动力学模型(R2>0.9).将电子鼻测定的数据经PCA分析后证明电子鼻能较好地区分贮藏于不同温度下的猪肉.基于电子鼻SL分析获得的猪肉气味变化与理化指标变化具有较好的对应关系,将上述两种货架期分析方法相结合并利用Arrheaius动力学模型求得EA和Q10值,从而得到贮藏在273~283、283~293K温度段下猪肉的货架期预测模型分别为SLd=68×2.833283-I/10(h)和SLg=32×2.471293-I/10(h).  相似文献   

20.
林进  杨瑞金  张文斌  华霄 《食品科学》2009,30(22):361-365
研究采用挥发性盐基氮(TVB-N)为即食南美白对虾的品质变化和货架寿命的指示指标,根据感官评定结果,确定TVB-N 值16.0mg/100g 为货架寿命终点。建立TVB-N 与贮藏时间(t)之间的一级动力学方程以及TVB-N 变化速率常数(k)与贮藏温度(T)之间的Arrhenius 方程,以预测在某一贮藏温度下即食南美白对虾的货架寿命理论值。求得Arrhenius 方程中TVB-N 变化反应的活化能Ea 为66.24kJ/mol,指前因子k0 为8.41 × 109。分别在15、37、42℃条件下下验证动力学模型的准确性,得到货架寿命预测值相比实际值的相对误差分别为10.45%、- 4.72%、- 0.87%。进一步通过Arrhenius 方程外推法求得真空包装的即食南美白对虾在20℃和25℃条件下下保藏的理论货架寿命分别为151.8d 和96.5d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号