首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presented work, we exploited microbial transglutaminase as a biocatalyst and glucosamine as an acyl acceptor to modify soybean protein isolates (SPI) by cross-linking and glucosamine conjugation and evaluated some functional properties of the modified product prepared. Electrophoretic studies revealed that transglutaminase-induced cross-linking and glucosamine conjugation occurred simultaneously during modification reaction, and some polymers of glycoproteins with higher molecular weights were formed in the modified product. HPLC analysis demonstrated that about 3.3 mol of glucosamine could be conjugated to 1 mol of SPI, under the preparation conditions as following: SPI concentration of 3% (w/v), acyl donor in SPI/glucosamine acceptor molar ratio of 1:3, transglutaminase addition level of 10 U g−1 proteins, reaction temperature of 37 °C, and reaction time of 6 h. Compared to SPI and transglutaminase-induced cross-linked SPI, the modified product with glucosamine conjugation about 3.3 mol mol−1 SPI clearly exhibited lower surface hydrophobicity, better interfacial properties (especially in emulsion and foaming stability), markedly increased apparent viscosity in the prepared dispersion, and higher enzymatic digestibility in vitro. Our results showed that this modification technique might have the potential as an effective approach to improve the functional properties of SPI.  相似文献   

2.
在氨基葡萄糖存在的条件下,利用转谷氨酰胺酶(EC2.3.2.13)对酪蛋白进行糖基化交联修饰。以修饰酪蛋白产物中氨基葡萄糖的导入量为指标,采用单因素试验分别考察反应体系pH值、酶添加量、反应温度和时间对修饰反应的影响。优化后的适宜修饰条件为:酪蛋白底物质量浓度为30g/L,氨基葡萄糖添加量为3mol(每kg酪蛋白中)、pH值为7.5、酶添加量为10kU(每kg酪蛋白中)、反应温度为37℃、时间4h。与酪蛋白和转谷氨酰胺酶促交联的酪蛋白相比,修饰酪蛋白产物的乳化性质和胶凝性质得到显著改善,并且体外消化性能未受到影响,表明转谷氨酰胺酶催化的糖基化交联修饰可以用于改善酪蛋白的这些功能性质。  相似文献   

3.
利用转谷氨酰胺酶催化酪蛋白与壳寡糖发生糖基化交联反应,控制反应时间(1、2 h和4 h)制备3种糖基化交联蛋白质(修饰酪蛋白),分析糖基化交联反应对酪蛋白胶凝和乳化性质的影响。结果表明:修饰酪蛋白的凝胶时间显著缩短(约50%);凝胶的持水能力为99%(800 r/min条件下离心10 min),较高;凝胶的微观结构发生了显著的变化,而且随着反应时间的延长,凝胶的空间网络结构更加规则;糖基化交联反应对酪蛋白的乳化活性及乳化稳定性影响较大。  相似文献   

4.
A microbial transglutaminase was used to cross-link soybean protein isolates in the presence of gelatin to prepare a cross-linked composite soybean protein-gelatin. Cross-linking conditions, such as total proteins, the ratio of soybean protein isolates to gelatin, and original pH, were fixed at 5% (w/v), 4:1 (w/w), and 7.5, respectively. The 4-hydroxyproline content in the modified product was measured and used as an index to select suitable transglutaminase addition, reaction temperature, and time by single factor experiments, which were found to be 20 U/g proteins, 40°C, and 2 h, respectively. Under the identified conditions, a modified product with 4-hydroxyproline content of about 36 mg/g proteins was prepared, and its functional properties were evaluated. SDS-PAGE analysis showed that several protein polymers existed in the modified product. Compared to the original soybean protein isolates or a cross-linked soybean protein isolates, the modified product had a better emulsifying stability and water holding capacity but a poor enzymatic digestibility in vitro, emulsifying activity and oil binding capacity; meanwhile, the dispersions formed by the modified product exhibited the highest apparent viscosity, storage modulus, and viscous modulus.  相似文献   

5.
BACKGROUND: Modification with carbohydrates usually changes the functional properties of proteins. Such modification might make non‐conventional food proteins (such as plant and microbial proteins) more applicable for human consumption. The purpose of this research was to conjugate glucosamine to lysozyme and casein using a water‐soluble carbodiimide and to investigate the effect of conjugation on the functional properties of these proteins. RESULTS: Glycosylation with glucosamine converted casein to high‐molecular‐weight species which appeared as diffuse bands in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Approximately 2 and 0.11 mol of glucosamine was attached to 1 mol of casein and lysozyme respectively. Both conjugated proteins exhibited improved solubility at different pHs (3 and 6) and different temperatures (25, 45 and 60 °C), increased heat stability and better emulsifying activity, emulsion stability and foaming capacity compared with the unmodified proteins (P < 0.05). CONCLUSION: These changes might increase the applicability of lysozyme as a natural antimicrobial and casein as a protein ingredient in different food systems. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
The impacts of oligochitosan glycosylation and cross‐linking on some properties of a commercial caseinate were investigated in this study. The glycosylated and cross‐linked caseinate with glucosamine content of 4.74 g kg?1 protein was generated by transglutaminase (TGase) and oligochitosan at pH 7.5 and 37 °C, with fixed substrate molar ratio of 1:3 (acyl donor to glucosamine acceptor), caseinate content of 50 g L?1, TGase of 10 kU kg?1 protein and reaction time of 3 h, respectively. In comparison with the caseinate, the glycosylated and cross‐linked caseinate had decreased reactable amino groups (0.58 vs. 0.51 mol kg?1 protein), higher apparent viscosity, decreased emulsifying activity index (about 14.5%) and statistically unchanged emulsion stability index (92.6 vs. 90.5%). Based on the mechanical spectra of the acid‐induced gels, the glycosylated and cross‐linked caseinate showed shorter gelation time (95 vs. 200 or 220 min) than the caseinate or cross‐linked caseinate. The gels prepared from the glycosylated and cross‐linked caseinate also had enhanced hardness, springiness and cohesiveness. The results indicated that TGase‐mediated oligochitosan glycosylation and cross‐linking has the potential to obtain new protein ingredients.  相似文献   

7.
利用转谷氨酰胺酶(transglutaminase,TGase)催化玉米醇溶蛋白与氨基葡萄糖盐酸盐(glucosamine hydrochloride,GAH)发生交联反应。通过SDS-聚丙烯酰胺凝胶电泳确认玉米醇溶蛋白与GAH发生交联反应。以玉米醇溶蛋白糖基化修饰产物中GAH导入量为指标,优化糖基化反应条件,并对玉米醇溶蛋白糖基化修饰样品的溶解性进行了表征。结果表明,最适的糖基化反应条件为底物质量浓度5 g/100 mL、TGase添加量50 U/g(以玉米醇溶蛋白计)、玉米醇溶蛋白中酰基供体与GAH中的酰基受体物质的量比1∶6、初始pH 8.0、反应温度44 ℃、反应时间7 h;此反应条件下,玉米醇溶蛋白中GAH的最大导入量为(11.34±0.21) mg/g(以玉米醇溶蛋白计)。与玉米醇溶蛋白相比,玉米醇溶蛋白交联样品与糖基化修饰样品的溶解性均得到提高,玉米醇溶蛋白糖基化修饰样品的溶解性最高。  相似文献   

8.
《Food chemistry》2002,78(3):363-368
In this work, the possibility of using a simple and quick method was tested for determining transglutaminase activity on casein using a spectrophotometric assay. The enzyme activity was estimated on the basis of the decrease of o-phthaldialdehyde reactive ε-amino groups of lysine following the formation of isopeptide bonds. The lysine residues involved in the formation of isopeptide bonds when the reaction reaches its plateau are equal to 0.126 μmol per mg of casein. This value results as equal to 0.205 μmol per mg of casein when N-carbobenzoxy-glutaminyl-glycine is added to the reaction medium as a small size acyl group donor. The electrophoretic analysis of the reaction products emphasised a different kinetic formation of casein polymers with the two substrate solutions used. This proposed method has resulted as accurate, with a mean coefficient of variation of 4.6%.  相似文献   

9.
为了提高玉米醇溶蛋白的生物利用率,以微生物转谷氨酰胺酶为催化剂,壳寡糖(分子质量为1 500 Da)作为酰基受体,通过糖基化反应修饰玉米醇溶蛋白,分析糖基化修饰对玉米醇溶蛋白物化性质和抗氧化活性的影响。红外光谱和游离氨基含量的测定结果表明,在转谷氨酰胺酶的催化下,玉米醇溶蛋白与壳寡糖发生了共价结合。与玉米醇溶蛋白和交联玉米醇溶蛋白相比,糖基化玉米醇溶蛋白的表面疏水性显著降低,表明其水溶性显著改善;糖基化玉米醇溶蛋白的抗氧化活性(包括1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、超氧阴离子自由基和羟自由基清除活性,还原力和亚铁离子螯合能力)显著提高,尤其是DPPH自由基清除活性,其EC50值为0.945 mg/m L;糖基化玉米醇溶蛋白的持水性、吸油性、乳化性和Zeta电位的绝对值均显著降低。实验结果可为糖基化玉米醇溶蛋白在食品工业的应用提供参考。  相似文献   

10.
ABSTRACT: It was found that ultra-high temperature (UHT) treatment of sodium caseinate and native whey protein-depleted micellar casein drastically increases the protein polymerization effect of an enzymatic treatment by microbial transglutaminase (TG). As a result the concentration of the isopeptide ε-(γ-glutamyl)lysine was increased significantly in UHT-treated micellar casein solutions after TG incubation compared with the unheated casein solution. Sodium caseinate was more susceptible to the cross-linking reaction as compared with the native casein micelles. The results demonstrate that the protein structure significantly affects the TG cross-linking reaction. The effect of an UHT treatment was considered to be related to a better TG accessibility due to a more open casein micelle structure and to the inactivation of a TG inhibitor substance. The results demonstrate that an unidentified component in the natural milk serum inhibits the TG reaction. The thermal inactivation of a TG inhibitor is the dominant effect explaining the improved cross-linking of UHT-treated casein micelles as well as sodium caseinate.  相似文献   

11.
A glycosylated and cross‐linked caseinate (GCC) with glucosamine amount of 4.74 g/kg protein was generated from caseinate and oligochitosan by a microbial transglutaminase. The applied temperature, pH and molar ratio of acyl donor/acceptor were 37 °C, 7.5 and 1:3, respectively; while caseinate concentration, transglutaminase addition and reaction time selected from single‐factor trials were 50 g/L, 10 kU/kg protein and 3 h, respectively. Electrophoretic analysis revealed the cross‐linking and glycosylation of caseinate. Compared with caseinate, GCC showed improved solubility in pH 4–11, higher digestibility in vitro and water binding capacity, about 3‐fold, but lower surface hydrophobicity and oil binding capacity (34%).  相似文献   

12.
研究利用转谷氨酰胺酶催化酪蛋白与壳寡糖发生糖基化交联反应,并控制反应时间(1、2 h和4 h)制备3种糖基化交联酪蛋白。经SDS-聚丙烯酰胺凝胶电泳、傅里叶红外光谱和游离氨基含量分析,表明酪蛋白同时发生了分子交联和糖基导入反应;经流变学分析,表明产物的表观黏度显著提高(剪切速率为1 s~(-1)时,反应4 h的修饰产物的表观黏度增加了约10倍),且表现出剪切稀释特性;同时,频率扫描实验表明,产物分散液由类固体性质转变为类流体性质。  相似文献   

13.
Sodium caseinate (SC) cross-linked by microbial transglutaminase (MTGase) for encapsulating microalgal oil was investigated. Protein cross-linking was evidenced in the SDS-PAGE graph. The emulsifying properties of SC depended on the cross-linked time with MTGase. The emulsifying activity and stability indexes of SC increased with the cross-linking time of 30 to 90 min (P30 to P90), and then declined with longer cross-linked time of 180 to 420 min (P180 to P420). The P30 to P90 as wall material for microencapsulation was superior to P180 to P420 and control sample. The microcapsules prepared with P30 to P90 showed more than 97% of microencapsulation efficiency in contrast to about 90% with the P180 to P420. During storage, the microcapsules prepared with P30 to P90 exhibited higher oxidative stability as compared with other microcapsules. A sustained release of microalgal oil was observed, and core release was time dependent and affected by cross-linking degree. Results showed that the powdered microalgal oil prepared with P30 to P90 demonstrated enhanced physicochemical properties and oxidative stability. Practical Application: The novel method using cross-linked proteins as wall material induced by microbial transglutaminase in food industry for sensitive ingredients could convert microcapsules into a stable form, which would lead to its more widespread utilization as a kind of food additive.  相似文献   

14.
A microbial transglutaminase (TGase) was used in this work as biocatalyst to prepare a cross‐linked casein–gelatin composite, a modified protein product with 4‐hydroxyproline about 41 mg g?1 peptides. Some cross‐linking conditions such as total protein content, the ratio of caseinate to gelatin and original pH were fixed at 5% (w/v), 4:1 (w/w) and 7.5, respectively. Other suitable conditions selected by single factor trials were TGase addition of 20 U g?1 peptides, reaction temperature of 45 °C and reaction time of 4 h. Peptide profiles from SDS‐PAGE analysis showed the composite was peptide polymers. Compared to that of the original caseinate or the cross‐linked caseinate, the dispersion of the composite exhibited a markedly enhanced apparent viscosity, storage modulus and viscous modulus. Meanwhile, the composite also showed a better water holding capacity, unchanged oil binding capacity and lower enzymatic digestibility in vitro, conferring its applicability as a new protein ingredient.  相似文献   

15.
采用美拉德干热反应制备ε-聚赖氨酸-葡聚糖共价复合物并制备乳液,通过浊度、粒径及稳定性分析,研究了反应温度、湿度、时间、反应物混合比和pH对共价复合物乳化性及乳化稳定性的影响。褐变程度及接枝度结果表明,ε-聚赖氨酸和葡聚糖发生了美拉德反应。以乳化性改善为主要指标,ε-聚赖氨酸/葡聚糖质量比1∶15,在pH8.5,相对湿度为65%,60℃条件下,干热反应1~3d产物的乳化性及乳化稳定明显改善,反应1d复合物乳化性较好且褐变程度较小,接枝度约26.4%。以乳化稳定性改善为指标,ε-聚赖氨酸/葡聚糖质量比1∶10,反应1d最佳。  相似文献   

16.
An indigenous inhibitor in raw milk inhibits cross-linking by transglutaminase (TG). The enzymatic cross-linking of micellar casein, compared with sodium caseinate, taking thermal inactivation of the TG inhibitor in the milk serum into consideration, was investigated. Inhibitor-free micellar casein was prepared by membrane separation combined with heat treatment of the UF permeate. The inhibitor permeated through MF (nominal pore size 0.1 μm) and UF (cutoff 25 kDa) membranes. TG-catalyzed cross-linking of casein micelles was clearly enhanced by UHT-treatment of UF permeate. Variation of the enzyme concentration showed that the inhibitory effect could not be compensated by higher enzyme concentrations when the casein micelles were suspended in unheated milk serum. Sodium caseinate, however, underwent high degrees of cross-linking even in unheated milk serum. By mixing an unheated milk serum and a UHT-treated milk serum at different ratios, the relative TG inhibitor activity was analysed. High inactivation (>80%) of the TG inhibitor is necessary to achieve high degrees of protein cross-linking.  相似文献   

17.
酪蛋白水解物的酶法修饰与ACE抑制活性变化   总被引:7,自引:2,他引:5  
利用枯草杆菌碱性蛋白酶水解酪蛋白制备酪蛋白水解物,其水解度为11.2%,IC50为47.1μg/mL。再应用相同的酶对酪蛋白水解物进行类蛋白反应修饰,考察底物浓度、温度和酶添加量对类蛋白反应的影响,并制备5个不同的修饰产物测定其ACE抑制活性和IC50值。结果表明,修饰产物的ACE抑制活性随修饰程度(游离氨基减少量)的增加而提高,并且都高于未经修饰的酪蛋白水解物。当游离氨基减少量为154.65μmol/g(蛋白)时,修饰产物的IC50值可降至0.6μg/mL。毛细管电泳分析结果显示类蛋白修饰后水解物的多肽组成情况发生明显变化。研究结果证明酪蛋白水解物的ACE抑制活性可以通过类蛋白反应的修饰作用而提高。  相似文献   

18.
In the present work, ultrasonic assisted synthesis and characterization of Maillard conjugates of whey protein isolate (WPI) and gellan gum (GG) was carried out and compared with the classical heating method. Conjugation was confirmed by FTIR, secondary structure, intrinsic fluorescence analysis, and degree of glycation (DG). The structural analysis revealed high protein unfolding by sonication confirming loss of α-helix content and exposing more amino groups to the conjugation reaction. Color change analysis confirmed that ultrasonication accelerated the initial stage of Maillard reaction but did not form the advanced Maillard reaction products. Ultrasonication gave higher DG in lesser time (17.22% in 60 min) than classical heating method (8.41% in 4 h). Physico-functional properties such as pH and thermal stability, emulsifying activity index, emulsion stability index, foaming capability and antioxidant activity of WPI-GG conjugates prepared by ultrasonic treatment were superior to classical heating method suggesting ultrasonication as a potentially alternative method for Maillard conjugation.Industrial relevanceImprovising supplementary protein functionality by conjugation with food grade polysaccharides like gellan gum through ultrasonication could make the process more controllable and economical. The undesired browning can be inhibited in ultrasonic assisted conjugate synthesis and hence the overall acceptance of the final product can be increased.  相似文献   

19.
脯氨酸存在下酪蛋白ACE抑制肽的Plastein反应修饰   总被引:1,自引:0,他引:1  
李亚云  赵新淮 《食品科学》2010,31(5):125-130
利用枯草杆菌碱性蛋白酶水解酪蛋白制备ACE 抑制肽,其IC50 为47.1μg/mL;采用相同酶催化ACE 抑制肽和脯氨酸进行Plastein 反应,对ACE 抑制肽进一步修饰,并用响应面分析法优化反应条件。在ACE 抑制肽质量分数为35%,反应时间为6h,以反应体系游离氨基减少量为指标,得到适宜的反应条件为:温度为47.8℃、脯氨酸比例为0.54、酶添加量为9.5kU/g pro,此条件下体系游离氨基减少量约195.7μmol/g pro。在适宜条件下改变反应时间对酪蛋白ACE 抑制肽进行同程度的Plastein 反应修饰,制备出6 个修饰程度不同的多肽混合物并测定它们的ACE 抑制活性、计算其IC50 值。结果表明:修饰产物的ACE 抑制活性随修饰程度的增加不规则变化,当反应体系的游离氨基减少量为195.7μmol/g pro 时,修饰产物的IC50 降低至0.2μg/mL。  相似文献   

20.
Casein was hydrolyzed by alcalase to a degree of hydrolysis of 10.9% to obtain a hydrolysate having ACE-inhibition in vitro with an IC50 value of 52.6 μg/mL. The prepared hydrolysate was modified by alcalase-catalyzed plastein reaction with extrinsic proline added at 0.4 mol/mol free amino groups (on the basis of the hydrolysate), and fractionated by ethanol- or methanol-water solvents in proportions of 3:7, 5:5, or 7:3 (v/v), respectively. With the decrease of free amino groups of the modified hydrolysate as the response, the optimized plastein reaction conditions were alcalase addition of 3.1 kU/g peptides, substrate concentration of 50% (w/v), and reaction temperature of 25°C. Four modified hydrolysates prepared with different reaction times exhibited higher ACE-inhibitory activities than the original hydrolysate. The evaluation results showed that solvent fractionation of the modified hydrolysate with the maximum activity (IC50 = 13.0 μg/mL) yielded the separated soluble fraction's higher activity but the precipitate fraction's lower one. Further enzymatic digestion of the modified hydrolysate with the maximum activity and its two fractionated products by four proteases in vitro caused damage to the activities, but the residual activities of the final digests were higher than that of the original hydrolysate, indicating that the plastein reaction could confer casein hydrolysate protease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号