首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Top-contact Copper phthalocyanine (CuPc) thin-film field-effect transistor (TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer as the dielectric was fabricated and investigated. With the multi-layer dielectric, drive voltage was remarkably reduced. A relatively large on-current of 1.1 × 107 A at a VGS of −15 V was obtained due to the strong coupling capability provided by the STS multilayer gate insulator. The device shows a moderate performance: saturation mobility of μsat = 6.12 × 104 cm2/V s, on-current to off-current ratio of Ion/Ioff = 1.1 × 103, threshold voltage of VTH = −3.2 V and sub-threshold swing SS = 1.6 V/dec. Atomic force microscope images show that the STS multilayer has a relative smooth surface. Experiment results indicate that STS multilayer is a promising insulator for the low drive voltage CuPc-based TFTs.  相似文献   

2.
The performance of ZnO thin film transistors (TFT) subjected to SiO2 interlayer treatments on Si3N4 insulators was investigated. In the case of a SiO2 interlayer of 10 nm on Si3N4 insulator, a drastic improvement in device performance was obtained. ZnO TFT with this interlayer showed reduced trap density between the Si3N4 and ZnO channel, bringing remarkable improvement in bias stability characteristics. These devices show good performance and exhibit a high field-effect mobility of 6.41 cm2/Vs, an on/off current ratio of 108, and a subthreshold swing of 1.46 V/decade. Also, the turn-on voltage shifted from − 2 V to − 6 V with negligible changes in the subthreshold swing and field effect mobility after total stress time.  相似文献   

3.
High performance self-aligned top-gate zinc oxide (ZnO) thin film transistors (TFTs) utilizing high-k Al2O3 thin film as gate dielectric are developed in this paper. Good quality Al2O3 thin film was deposited by reactive DC magnetron sputtering technique using aluminum target in a mixed argon and oxygen ambient at room temperature. The resulting transistor exhibits a field effect mobility of 27 cm2/V s, a threshold voltage of − 0.5 V, a subthreshold swing of 0.12 V/decade and an on/off current ratio of 9 × 106. The proposed top-gate ZnO TFTs in this paper can act as driving devices in the next generation flat panel displays.  相似文献   

4.
We report on high mobility ZnO thin film transistors (TFTs) (< 5 V), utilizing a room temperature grown MgO-Bi1.5Zn1.0Nb1.5O7 (BZN) composite gate insulator on a glass substrate. 30 mol% MgO added BZN composite gate insulators exhibited greatly enhanced leakage current characteristics (~< 2 × 10− 8 A/cm2 at 0.3 MV/cm) due to the high breakdown strength of MgO, while retaining an appropriate high-k dielectric constant of 32. The ZnO-TFTs with MgO-BZN composite gate insulators showed a high field-effect mobility of 37.2 cm2/Vs, a reasonable on-off ratio of 1.54 × 105, a subthreshold swing of 460 mV/dec, and a low threshold voltage of 1.7 V.  相似文献   

5.
A thin-film structure comprising Al2O3/Al-rich Al2O3/SiO2 was fabricated on Si substrate. We used radio-frequency magnetron co-sputtering with Al metal plates set on an Al2O3 target to fabricate the Al-rich Al2O3 thin film, which is used as a charge storage layer for nonvolatile Al2O3 memory. We investigated the charge trapping characteristics of the film. When the applied voltage between the gate and the substrate is increased, the hysteresis window of capacitance-voltage (C-V) characteristics becomes larger, which is caused by the charge trapping in the film. For a fabricated Al-O capacitor structure, we clarified experimentally that the maximum capacitance in the C-V hysteresis agrees well with the series capacitance of insulators and that the minimum capacitance agrees well with the series capacitance of the semiconductor depletion layer and stacked insulator. When the Al content in the Al-rich Al2O3 is increased, a large charge trap density is obtained. When the Al content in the Al-O is changed from 40 to 58%, the charge trap density increases from 0 to 18 × 1018 cm− 3, which is 2.6 times larger than that of the trap memory using SiN as the charge storage layer. The device structure would be promising for low-cost nonvolatile memory.  相似文献   

6.
Y.M. Hu  C.Y. Wang  T.C. Han 《Thin solid films》2010,519(4):1272-1276
This paper investigates the anomalous and specific Raman modes present in Mn-doped ZnO thin films deposited using the magnetron co-sputtering method. To trace these peaks, we prepared Mn-doped ZnO films with different Mn concentrations by altering the sputtering power of the Mn target in a pure Ar or Ar + N2 sputtering atmosphere. A broad band observed in the Raman spectra of heavily Mn-doped ZnO films ranges from 500 to 590 cm− 1. This band involves the enhanced A1 longitudinal mode and activated silent modes of ZnO, as well as a characteristic mode of Mn2O3. Four anomalous Raman peaks at approximately 276, 510, 645 and 585 cm− 1 are present in pure and Mn-doped ZnO films deposited under the Ar + N2 sputtering atmosphere. The peaks at 276 cm− 1 and 510 cm− 1 may originate from the complex defects of Zni-NO and Zni-Oi, respectively, while the peak at approximately 645 cm− 1 could be due to a complex defect of Zni coupled with both the N and Mn dopants. The results of this study suggest classifying the origins of anomalous and specific Raman peaks in Mn-doped ZnO films into three major types: structural disorder and morphological changes caused by the Mn dopant, Mn-related oxides and intrinsic host-lattice defects coupled with/without the N dopant.  相似文献   

7.
We report on the dielectric properties and leakage current characteristics of 3 mol% Mn-doped Ba0.6Sr0.4TiO3 (BST) thin films post-annealed up to 600 °C following room temperature deposition. The suitability of 3 mol% Mn-doped BST films as gate insulators for low voltage ZnO thin film transistors (TFTs) is investigated. The dielectric constant of 3 mol% Mn-doped BST films increased from 24 at in-situ deposition up to 260 at an annealing temperature of 600 °C due to increased crystallinity and the formation of perovskite phase. The measured leakage current density of 3 mol% Mn-doped BST films remained on the order of 5 × 10− 9 to 10− 8 A/cm2 without further reduction as the annealing temperature increased, thereby demonstrating significant improvement in the leakage current characteristics of in-situ grown Mn-doped BST films as compared to that (5 × 10− 4 A/cm2 at 5 V) of pure BST films. All room temperature processed ZnO-TFTs using a 3 mol% Mn-doped BST gate insulator exhibited a field effect mobility of 1.0 cm2/Vs and low voltage device performance of less than 7 V.  相似文献   

8.
In this work, Y2O3 was evaluated as a gate insulator for thin film transistors fabricated using an amorphous InGaZnO4 (a-IGZO) active layer. The properties of Y2O3 were examined as a function of various processing parameters including plasma power, chamber gas conditions, and working pressure. The leakage current density for the Y2O3 film prepared under the optimum conditions was observed to be ~ 3.5 × 10− 9 A/cm2 at an electric field of 1 MV/cm. The RMS roughness of the Y2O3 film was improved from 1.6 nm to 0.8 nm by employing an ALD (Atomic Layer Deposition) HfO2 underlayer. Using the optimized Y2O3 deposition conditions, thin film transistors (TFTs) were fabricated on a glass substrate. The important TFT device parameters of the on/off current ratio, sub-threshold swing, threshold voltage, and electric field mobility were measured to be 7.0 × 107, 0.18 V/dec, 1.1 V, and 3.3 cm2/Vs, respectively. The stacked insulator consisting of Y2O3/HfO2 was highly effective in enhancing the device properties.  相似文献   

9.
In this work, the nanostructure-assisted “Al/SiO2/Ir-silicide-NCs/SiO2/P-Si-sub/Al” stack with iridium silicide nanocrystals (Ir-silicide-NCs) embedded between two SiO2 layers has been demonstrated in the application of nonvolatile memory for the first time. A significant memory window voltage of 14.2 V at sweeps of +/− 10 V by capacitance-voltage measurement can be reached, when well-distributed Ir-silicide-NCs are observed in cross-sectional TEM examination. In this case, the trap density is estimated to be about 1.06 × 1013 cm− 2, indicating a high trapping efficiency stack for nonvolatile memory application.  相似文献   

10.
Hydrogen-containing Ta2O5 (Ta2O5:H) thin films are considered to be a candidate for a proton-conducting solid-oxide electrolyte. In this study, Ta2O5:H thin films were prepared by reactively sputtering a Ta metal target in an O2 + H2O mixed gas. The effects of sputtering power and post-deposition heat treatment on the ion conducting properties of the Ta2O5:H thin films were studied. The ionic conductivity of the films was improved by decreasing the RF power and a maximum conductivity of 2 × 10−9 S/cm was obtained at an RF power of 20 W. The ionic conductivity decreased by heat-treatment in air, and no ion-conduction was observed after treatment at 300 °C due to the decrease in hydrogen content in the films.  相似文献   

11.
The performances of pentacene thin-film transistor with plasma-enhanced atomic-layer-deposited (PEALD) 150 nm thick Al2O3 dielectric are reported. Saturation mobility of 0.38 cm2/V s, threshold voltage of 1 V, subthreshold swing of 0.6 V/decade, and on/off current ratio of about 108 have been obtained. Both depletion and enhancement mode inverter have been realized with the change of treatment method of hexamethyldisilazane on PEALD Al2O3 gate dielectric. Full swing depletion mode inverter has been demonstrated at input voltages ranging from 5 V to − 5 V at supply voltage of − 5 V.  相似文献   

12.
Metal-insulator-semiconductor capacitors were fabricated with sputtered ZnO and atomic layer deposited HfO2 as the semiconductor and gate dielectric layers, respectively. From the capacitance-voltage measurements, it was confirmed that pre-deposition annealing of the sputtered ZnO layer at 300 °C in air greatly decreased the interfacial trap density (∼ 2 × 1012 cm− 2 eV− 1). X-ray photoelectron spectroscopy showed a decrease in the OH bonds adsorbed on the ZnO surface after pre-deposition annealing, which improved the interface property. A very small capacitance equivalent thickness of 1.3 nm was achieved, which decreased the operation voltage (< 5 V) of the device significantly.  相似文献   

13.
The influence of SnO2 concentration in the target on the film characteristics was studied in order to make the useful database for the device design when low discharge voltage sputtering method and a high density In2O3-SnO2 ceramic targets were used. In the case of the films deposited on unheated substrate, X-ray diffraction profile showed amorphous structure. Minimum resistivity of 358 μΩ cm was obtained by In2O3 film with mobility of 40.1 cm2 (V s)−1 and carrier density of 4.35E+20 cm−3. With the increase of SnO2 contents, resistivity of the films increased because of the decrease in both carrier density and mobility. Whereas, the films deposited on heated substrates showed polycrystalline structure. Resistivity was reduced, ranging from 5 to 20 wt.% SnO2, and minimum resistivity of 136 μΩ cm was obtained at 15 wt.% with mobility of 40.5 cm2 (V s)−1 and carrier density of 1.13E+21 cm−3. Transmittance and reflectance of these films strongly depend on carrier density.  相似文献   

14.
Jong Hoon Kim 《Thin solid films》2008,516(7):1529-1532
Coplanar type transparent thin film transistors (TFTs) have been fabricated on the glass substrates. The devices consist of intrinsic ZnO, Ga doped ZnO (GZO), and amorphous HfO2 for the semiconductor active channel layer, electrode, and gate insulator, respectively. GZO and HfO2 layers were prepared by using a pulsed laser deposition (PLD) and intrinsic ZnO layers were fabricated by using an rf-magnetron sputtering. The transparent TFT exhibits n-channel, enhancement mode behavior. The field effect mobility, threshold voltage, and a drain current on-to-off ratio were measured to be 14.7 cm2/Vs, 2 V, and 105, respectively. High optical transmittance (> 85%) in visible region makes ZnO TFTs attractive for transparent electronics.  相似文献   

15.
High-k Gd2O3 used for thin film transistor (TFT) gate insulators has been synthesized via a simple solution process. Phase analysis and capacitive performance reveal that a high dielectric constant of ~ 20 and a low leakage current level of < 10−8 A/cm2 at 1 MV/cm with a good transparency under the visible wavelength region are readily produced by the sol-gel method. Eu3+ doping leads to an increased dielectric constant induced by the additional electric dipole transition, which is evidently visualized by the photoluminescence behavior and/or by the defect-controlled thin film microstructures. Thus, the solution-processed (Gd,Eu)2O3 film is a viable gate insulator to be considered for the proposed “color emissive” switching devices as well as for the low power-driven TFT devices.  相似文献   

16.
This article reports a study on the preparation, densification process, and structural and optical properties of SiO2-Ta2O5 nanocomposite films obtained by the sol-gel process. The films were doped with Er3+, and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 °C. The onset of crystallization and devitrification, with the growth of Ta2O5 nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er3+-doped nanocomposite annealed at 900 °C consists of Ta2O5 nanoparticles, with sizes around 2 nm, dispersed in the SiO2 amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the 4I13/2 levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide.  相似文献   

17.
Metal-Insulator-Metal (MIM) capacitors are one of the most essential components of radio frequency devices and analog/mixed-signal integrated circuits. In order to obtain high capacitance densities in MIM devices, high-k materials have been considered to be promising candidates to replace the traditional insulators. The challenging point is that the dielectric material must demonstrate high capacitance density values with low leakage current densities.In this work, SrTiO3 based MIM capacitors have been investigated and the electrical performance of the devices have been optimized by using bilayered systems of Sr2Ta2O7−x/SrTiO3 with different thicknesses of Sr2Ta2O7−x. Sputtering X-Ray photoelectron spectroscopy (XPS) measurements have been applied to investigate the interfaces between the thin film constituents of the MIM stacks. The optimized bilayered system provides a leakage current density of 8∗10− 8 A/cm2 at 2 V (bottom electrode injection) and a high capacitance density of 13 fF/μm2.  相似文献   

18.
NaSm9(SiO4)6O2 powders were synthesized by mild hydrothermal method at 180 °C for 24 h. The infrared optical properties and structure of the obtained powders were characterized. There existed two narrow and sharp absorptive bands near 943 cm− 1 (10.6 μm). The band at 938 cm− 1 was assigned to the stretching vibrations of SiOSm groups connecting to Q1 species and the band at 989 cm− 1 was attributed to the stretching vibrations of SiOSm groups linking with Q0 species. The reflectivity was lower than 1% from 900 to 1200 nm and reached the minimum of 0.46% at 1073 nm. The prepared powders exhibit potential to act as a new kind of absorptive material for the infrared light of 10.6 μm and 1.06 μm.  相似文献   

19.
A stack of Ta2O5/SiO2 layers is presently used as coating layer of mirrors in interferometric detectors for gravitational waves. The sensitivity of these detectors is limited in the 50-300 Hz frequency range by the mirror thermal noise, and it was suggested that mechanical losses in the Ta2O5 are the dominant source of noise. We focus here on Spectroscopic Ellipsometry (SE) results (in the 0.75 ÷ 5 eV spectral range) obtained on high quality Ta2O5 films deposited on SiO2 substrates by Double Ion Beam Sputtering at the Laboratoire des Matériaux Avancés (Lyon, France). The films are extremely flat as indicated by the 0.2 nm RMS roughness determined by Atomic Force Microscopy (AFM) on (20 × 20) μm2 areas. The comparison of the optical properties determined by SE with literature data, corroborated by X-ray Photoelectron Spectroscopy (XPS) data, suggests that the films present a non-ideal bulk stoichiometry and/or some degree of nanoporosity. The possible influence of an interface layer is also discussed.  相似文献   

20.
The impact of fluorine (F) incorporation into TiN/HfO2/SiO2 on work function has been investigated. By process scheme optimization, F implanted through sacrificial oxide layer reveals sufficient the flat-band voltage (VFB) shift ~ 170 mV without an equivalent oxide thickness (EOT) penalty. On the contrary, apparent EOT increasing was observed if F implanted directly through Si. Moreover, F incorporation into TiN/Al2O3/HfO2/SiO2, the VFB shift can be up to about 250 mV or 410 mV at 10 keV with a dose of 2 × 1015 cm− 2 or 5 × 1015 cm− 2, respectively. Effective work function has been boosted to 4.95 eV closer to the valence band edge. Besides, interface defect density also can be improved ~ 20% by F incorporation from charge pumping result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号