首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
氢-水液相催化交换(LPCE)是处理大量含氚废水的有效途径,而疏水性载体苯乙烯-二乙烯基苯共聚物(SDB)是LPCE的关键材料,对活性组分Pt起到承载作用。采用30mm×400mm玻璃柱模拟催化反应床,研究了SDB疏水性载体与填料的填装方式、气体流速、液体流速、温度以及分层装填高度等工艺条件对床层压力降和持液量的影响。结果表明:当不锈钢θ填料与SDB疏水性载体的体积比为4∶1时,无论采用混合装还是分层装,床层压力降均随气体流速、液体流速和温度的增加而升高,而动持液量随气体流速的增加而减小,随液体流速的增加而增大;混合装的压力降低于分层装,不同分层装对应的床层压力降大小为:四层装三层装一层装两层装。  相似文献   

2.
贾青青  胡石林  刘亚明 《同位素》2021,34(1):46-53,I0003
为验证疏水结构对催化剂性能的影响规律,研究以柱状(φ=5 mm)多孔陶瓷为载体,在载体表层构筑三种不同的氧化铈(CeO2)微纳结构为载体提供疏水环境,通过浸渍-气相还原法制得用于氢同位素分离的Pt/疏水陶瓷催化剂,以X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDX)、X光电子能谱(XPS)及一氧化碳(CO)脉冲吸附等对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,不同疏水结构对载体孔结构及零价铂含量影响可忽略不计,对铂粒子在载体表层的富集程度及催化剂铂粒子分散度影响明显,制得的催化剂催化活性差距明显。分布均匀且对载体覆盖率高的绒毛状疏水结构可使得更多的铂粒子沉积在载体表层,可获得更优的催化活性。  相似文献   

3.
以苯乙烯(St)为单体,共聚单体二乙烯基苯(DVB)为交联剂,通过悬浮聚合法制备了不同交联结构的大粒径(2~5mm)多孔聚苯乙烯-二乙烯基苯(SDB)小球,并用浸渍还原法制备了Pt-SDB疏水催化剂。采用傅里叶红外光谱(FT-IR)、热重(TG)、N2吸附-解吸、微机控制电子万能试验机、静态水接触角(CA)、场发射扫描电镜(FSEM)和氢-水催化交换实验等手段分析了DVB用量对SDB的分子结构、热稳定性、孔结构、抗压强度、疏水性、Pt的分散度及催化活性的影响。结果表明:随着DVB用量的增大,热稳定性、抗压强度以及疏水性明显提高,Pt的分散度显著增大,比表面积和孔容逐渐增大,平均孔径则逐渐减小。当DVB与St的摩尔比(n(DVB)∶n(St))=1∶1时,SDB疏水催化剂载体性能优异,孔结构、Pt的分散度及疏水性最佳,制得的Pt-SDB催化剂柱效率达95.6%(65℃)、96.1%(80℃)。  相似文献   

4.
为探究Si原子在CeO2(111)表面吸附的微观行为,采用第一性原理的方法研究了Si原子在CeO2(111)表面的吸附作用、电子结构和迁移过程,计算了Si原子在CeO2(111)表面的吸附能,最稳定及次稳定吸附位置的电子态密度与电荷密度分布、迁移激活能。计算结果表明:Si原子最易吸附于基底表层的O原子上,其中O桥位(Obri)吸附作用最强,O顶位(Ot)和O三度位(Oh)吸附强度次之。Si原子仅对其最邻近的表层O原子结构影响较大,这与Si原子及其最邻近的O原子间电荷密度重叠程度增强的结果一致。Si原子最易围绕着Ot位从Obri位向Oh位迁移,迁移所需激活能为0.849 eV。  相似文献   

5.
氢-水液相交换疏水催化剂制备及活性影响因素研究进展   总被引:1,自引:0,他引:1  
氢-水液相催化交换反应(LPCE)可用于含氚废水处理、含氚重水提氚、重水升级和重水生产等工艺,疏水催化剂是实现LPCE的关键。本文对疏水催化剂的制备方法及活性影响因素进行了综述,重点介绍了Pt/C/惰性载体类疏水催化剂的研究进展,包括惰性载体、活性金属载体的选择,碳负载Pt基催化剂制备方法,详细介绍了围绕疏水催化剂制备开展的基础研究工作,如LPCE微观反应机理,活性金属微观结构与催化活性的关系等。对疏水催化剂这一领域有待解决的问题及下一步的研究方向进行了探讨。  相似文献   

6.
氢-苯乙烯体系中氢-氚同位素交换反应的热力学研究   总被引:3,自引:0,他引:3  
采用6-311G全电子基函数和B3p86方法对聚苯乙烯-二乙烯基苯(polystyrene-divinylbenzene,SDB)单体之一的苯乙烯分子结构进行优化计算.根据热力学原理,计算得到SDB官能团分子氢氚取代反应在不同温度下的标准生成自由能函变、反应平衡常数及氚气和氢气的反应平衡压力比.结果表明,温度的升高不利于氢氚取代反应T2(g) SDB(H2)(s)→H2(g) SDB(T2)(s)正向进行,这与Pt/SDB疏水催化剂在氢-水同位素交换的催化反应实验过程中的氢氚取代研究结论一致.  相似文献   

7.
聚苯乙烯-二乙烯基苯(SDB)是氢同位素分离技术中气-液交换反应重要的疏水催化剂载体.用密度泛函B3P86方法和基函数6-311G进行全电子计算,获得了SDB疏水官能团分子苯乙烯的基态电子状态、基态能量、离解能和几何参数.计算了苯乙烯上H、D排代反应的焓变、熵变和吉布斯函数变化,以及反应的平衡常数和气体压力比.计算结果表明,SDB上氘排代氢的反应有可能发生,但进行的程度较低,且随着反应温度的提高,这种排代将更难进行.同时,计算表明氢氘排代更易发生在苯环上,而乙烯基上的排代相对困难.  相似文献   

8.
为提升疏水催化剂性能并扩展其应用范围,以柱状(ø=5 mm)多孔陶瓷为载体,在载体表层构筑氧化铈(CeO2)微纳结构为载体提供疏水环境,采用浸渍还原法制备用于氢同位素交换分离的新型Pt/疏水陶瓷催化剂。为验证新型疏水催化剂实用性,以X射线衍射(XRD)、扫描电镜(SEM)、X光电子能谱(XPS)、一氧化碳(CO)脉冲吸附、能谱(EDX)对催化剂性能进行综合表征,并采用气汽并流方式测试催化剂催化活性。结果表明,新型陶瓷载体疏水性优良,疏水结构对载体孔结构性能影响较小;疏水层使浸渍液对载体浸润能力下降,铂粒子分散度及零价铂含量降低;浸润能力下降使前驱体多沉积在载体表层而较难渗入载体内部,表层铂粒子含量高,使反应物的反应通道较短,相同时间内有更多的铂粒子参与反应。制得催化剂催化活性可达同种形状有机载体类催化剂催化活性的80%,冲淋12周后,催化活性下降比率小于5%,新型疏水催化剂催化活性及耐冲淋稳定性均较好,实用性佳,具有良好的应用前景。  相似文献   

9.
采用~(60)Coγ射线对苯乙烯二乙烯基苯共聚物(SDB)和在SDB上担载金属铂后的疏水催化剂(Pt—SDB)在限量空气和氘气气氛下进行辐照,辐照剂量范围为200~1000 kGy。辐照后,通过扫描电镜(SEM)、傅立叶变换红外光谱(FT-IR)、差热扫描量热法(DSC)和热重(TG)等分析方法研究了辐照对SDB和Pt—SDB表观型貌、热性能、化学结构和氢同位素交换的影响。研究结果表明:在200~1 000 kGy的剂量范围内,辐照对SDB的表观型貌没有破坏性影响;辐照没有引起SDB的热性能和结构变化;氘气气氛下SDB和Pt—SDB有一定的氢同位素交换,但辐射对氢同位素交换影响不大。  相似文献   

10.
在高湿环境下去除放射性气态碘时,较高的湿度会对活性炭吸附碘效率产生严重影响。以聚二乙烯基苯(PDVB)为疏水改性剂,采用简单的液相浸渍法对不同种类的活性炭进行疏水改性。通过表征活性炭孔隙结构、表面疏水性能和碘吸附法探究了其在高湿环境下对气态碘的吸附性能和改性机理。结果表明:PDVB本身具有多孔结构且疏水性优异,浸渍改性后,PDVB多孔纳米粒子可以进入材料孔隙结构中改善活性炭的多孔结构性能,增强比表面积和微孔容积,进而有效提升材料对碘的吸附容量。此外,在相对湿度(RH)为96%的高湿度环境进行碘吸附性能测试,由于PDVB疏水改性后疏水性增强,减弱了对水分子的亲和力,降低了水分子竞争吸附的影响,使得其在高湿环境下也具有较好的适用性。还发现该改性方法对其他无机多孔材料的疏水改性也有应用潜力。  相似文献   

11.
三种疏水催化剂耐氚辐照稳定性初步研究   总被引:4,自引:1,他引:4  
为考察3种疏水催化剂Pt-SDB(SDB为苯乙烯-二乙烯苯共聚物),Pt-PTFE(PTFE为聚四氟乙烯),Pt-C-PTFE 的耐氚辐照稳定性,将其置于1.26×1012Bq/L的氚水中静态辐照210 d后,对其催化交换性能及催化剂中残存氚进行分析。结果表明,3种催化剂在氚的β辐照下未发生裂解,催化剂中氚的残存量随催化剂比表面积的增加而增加,基本没有发生结构上的氚取代反应;但在氚水辐照后,3种疏水催化剂的交换性能出现了不同程度的变化,按单位质量Pt粒子计算,在测试不确定度范围内Pt-PTFE和Pt-C-PTFE的转化率没有发生明显变化,Pt-SDB(1)的转化率下降了11.2%,Pt-SDB(2)的转化率下降了16.9%。  相似文献   

12.
The styrene divinylbenzene copolymer (SDBC) supported platinum catalyst and the liquid phase catalytic exchange (LPCE) column have been developed to be applicable to the Wolsong tritium removal facility (WTRF) in Korea. The catalyst deactivation subject to both reversible uniform poisoning and permanent loss by impurity poisoning was investigated using a time-on-stream theory and a simplified shell progressive poisoning scenario in special case of higher internal diffusion resistance. Experimental data from fixed bed reactors with the Pt/SDBC catalysts have been used to establish the deactivation model and to estimate key parameters to be used in the WTRF LPCE column design. It was found that an impurity control in the streams would be critical to the WTRF LPCE column operation since the impurity poisoning played a very important role in the overall catalytic exchange reaction. Except for the case of the severe impurity poisoning of the whole catalysts, the LPCE column can be in operation over 10 years without any regeneration of the catalysts.  相似文献   

13.
Styrene–divinylbenzene copolymer (SDB) is a key material for preparing Pt/SDB hydrophobic catalyst, which could be used for the treatment and purification of tritiated water. In this paper, a modified SDB (MSDB) carrier based on tert-butyl styrene (t-Bu-St), methyl methacrylate (MMA), styrene (St) and divinylbenzene (DVB) was prepared by aqueous suspension polymerization. Static adsorption experiment shows that the MSDB has the best adsorption performance at the molar ratio of St, DVB, t-Bu-St and MMA of 1:0.85:0.3:0.3 with n-heptane as porogen. The adsorption behavior of MSDB is analyzed by theoretical formulas. Data show that the adsorption process is in accordance with the Lagrange pseudo-first-order kinetics and Freundlich isotherm (1/n?<?1), which is exothermic and entropy decrease (ΔH0?<?0, ΔS0?<?0) in a temperature range of 293.15–333.15 K.  相似文献   

14.
Pt/PTFE/泡沫SiC规整疏水催化剂可用于氢-水液相催化交换反应(Liquid-phase catalytic exchange process,LPCE)进行水去氚化(Water detritiation system,WDS)。为研究浸渍溶液对该催化剂性能的影响,以丙酮、乙二醇、无水乙醇分别配制不同的氯铂酸-有机溶液,直接浸渍具有疏水性的PTFE/泡沫SiC,250°C气相还原,从而制备Pt/PTFE/泡沫SiC规整疏水催化剂。利用X射线衍射分析(X-ray diffraction,XRD)、X射线光电子能谱分析(X-ray photoelectron spectroscopy,XPS)、透射电子显微镜(Transmission electron microscope,TEM)等表征手段分析所得催化剂的结构与组成,并研究其氢-水液相催化交换性能。三种催化剂的平均粒径分别为9.3 nm、3.6 nm、6.8 nm,乙二醇对Pt粒子有保护作用,得到的平均粒径最小。Pt存在Pt(0)、Pt(II)和Pt(IV)三种价态,氯铂酸-乙醇和氯铂酸-乙二醇制备的催化剂中0价态均为主要价态,Pt(0)比例分别为47.60%和43.97%,氯铂酸-丙酮制备的催化剂中4价态为主要价态。根据LPCE性能测试结果,氯铂酸-乙二醇制备的催化剂柱效率最高,说明催化剂中Pt(0)价态比例接近时,Pt粒子粒径大小对氢-水液相催化交换反应的影响更明显。揭示乙二醇为优选溶剂。  相似文献   

15.
为研究还原温度对Pt/PTFE/泡沫SiC规整疏水催化剂性能的影响,以200、225、250、275、300℃为还原温度,氯铂酸-乙醇溶液为浸渍溶液,采用浸渍-气相还原法制备Pt/PTFE/泡沫SiC规整疏水催化剂。利用接触角测试仪分析还原温度对催化剂疏水性能的影响,利用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电镜(TEM)等表征手段分析所得催化剂的结构与组成,并研究其氢-水液相催化交换(LPCE)性能。结果表明:还原温度的变化对催化剂疏水性能没有影响;还原温度200、225℃时催化剂中Pt粒子团聚现象严重,Pt粒子粒径大,分散性差;还原温度250、275、300℃时催化剂中Pt粒子粒径分散性较好;还原温度275℃时催化剂中Pt粒子粒径较窄,平均粒径最小,为6.2nm。Pt存在Pt(0)、Pt(Ⅱ)和Pt(Ⅳ)三种价态,还原温度275℃下催化剂中0价Pt所占比例高达72.50%,还原程度高。LPCE催化交换性能也表明,还原温度275℃时催化剂柱效率最高。揭示275℃是所选取还原温度中的最佳还原温度。  相似文献   

16.
For the design and development proposal of the European procurement package of the Water Detritiation System (WDS) for ITER, an experimental WDS was installed at the Tritium Laboratory Karlsruhe (TLK) to investigate the process and various components of the system. The WDS facility at TLK uses the Combined Electrolysis Catalytic Exchange (CECE) process and consists of two Solid Polymer Electrolyte (SPE) electrolysis cells and a stainless steel Liquid Phase Catalytic Exchange (LPCE) column with an effective length of 8 m. After installation and commissioning, the first experimental runs were performed with a tritium concentration up to 0.6 GBq kg?1 in the feed water to test the operation modes of the facility, all the safety installations and procedures and the performance of the LPCE column during a runtime of up to 130 h.Regarding the final design of the WDS for ITER, the first experiments indicated several aspects which had to be modified in order to enhance the procedural and operating performance of the facility.  相似文献   

17.
通过静态吸附实验,研究了改性稻杆对UO2+2的吸附行为,从吸附热力学和吸附动力学方面对改性稻杆吸附UO2+2的过程进行了分析,并采用红外光谱(FT-IR)、扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)等分析手段探讨了改性稻杆吸附UO2+2的机理。结果表明:改性稻杆对UO2+2的吸附过程符合Langmuir等温吸附模型,相关系数达到0.98以上,表现为以单层吸附为主;表面吸附是改性稻杆吸附UO2+2动力学控制的主要步骤,吸附动力学过程符合准二级吸附速率模型,相关系数达0.999 2;热力学研究表明,改性稻杆吸附UO2+2是吸热、自发、不可逆的过程;改性稻杆吸附UO2+2前后的表面形态发生了变化,部分晶体结构发生了改变,吸附过程中改性稻杆细胞壁上的—OH、C O、Si O及P—O等活性基团与UO2+2发生络合反应,形成络合物,故改性稻杆吸附U(Ⅵ)的机理为表面络合吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号