首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以辛弗林为模板分子,丙烯酸和丙烯酸羟乙酯为双功能单体,偶氮二异丁腈为引发剂,乙二醇二甲基丙烯酸酯为交联剂,通过沉淀聚合法制备辛弗林分子印迹聚合物。静态吸附法筛选最佳合成条件,测定最佳条件下聚合物的最大吸附量、特异识别性能和吸附机理,通过扫描电子显微镜对聚合物进行形态表征,以合成的分子印迹聚合物作为固相萃取填料,对枳实粗粉中的辛弗林进行提取和纯化。实验结果表明在10 mL乙腈作为致孔剂的条件下,当模板分子与功能单体、引发剂、交联剂物质的量比为1∶4∶2∶20时,分子印迹聚合物形貌良好,对辛弗林具有特异识别性且吸附效果最佳,最大吸附量为228.82μmol/g。利用分子印迹固相萃取技术对枳实粗粉中的辛弗林进行精制后,辛弗林质量分数由1.93%提高到93.34%,提取率为73.90%。  相似文献   

2.
以吡蚜酮为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,采用本体聚合法制备了吡蚜酮分子印迹聚合物。实验优化了模板分子与功能单体的摩尔比,通过吸附动力学和等温吸附实验对聚合物的吸附性能进行了表征,利用拟二级动力学模型和Scatchard分析研究了聚合物对目标物的吸附行为。实验结果表明:模板分子与功能单体摩尔比为1∶4时,制备的吡蚜酮分子印迹聚合物具有较好的印迹效果,最优条件下聚合物的吸附容量为25.11mg/g,印迹因子为3.0,可在80min内达到吸附平衡(20mg/L);聚合物对目标物的吸附行为符合拟二级动力学模型(R2=0.999),Scatchard分析结果表明聚合物在聚合过程中形成了较为明显的印迹位点,对目标物呈现一致的亲和力。  相似文献   

3.
以表儿茶素为模板分子,丙烯酰胺为功能单体,偶氮二异丁腈作为引发剂,乙二醇二甲基丙烯酸酯为交联剂,通过原位聚合法制备分子印迹聚合物。首先考察不同模板分子、功能单体、交联剂比例条件下表儿茶素分子印迹聚合物的特异性吸附能力。结果表明表儿茶素与丙烯酰胺、乙二醇二甲基丙烯酸酯物质的量比为1∶6∶40时,分子印迹聚合物的吸附效果最佳,其模板分子回收率KMIPs为84.62%,特异性识别因子Q为4.55;然后利用扫描电子显微镜和红外光谱技术对制备的印迹聚合材料进行表征;最后在毛细管电泳最优条件下对加载过固相萃取柱的过柱液与洗脱液进行检测,建立分子印迹固相萃取-毛细管电泳联用检测表儿茶素的方法。实验结果表明,分子印迹聚合物成功聚合,形貌良好且具有专一吸附特性。该方法适用于六堡茶中表儿茶素的检测。  相似文献   

4.
以西维因为模板分子,甲基丙烯酸为功能单体,双官能团试剂甲基丙烯酰氧丙基三甲氧基硅烷为交联剂,添加适量的离子液体1-丁基3-甲基咪唑-6-氟磷酸盐,采用有机-无机杂化技术制备西维因分子印迹聚合物。通过优化合成条件,得到3者最佳反应物质的量比为1∶4∶7,离子液体的添加剂量为25μL/m L。该印迹聚合物对西维因的吸附容量达到3.21 mg/g,明显高于非印迹的吸附用量0.72 mg/g。西维因在印迹聚合物中的分配系数Kd为211.35,明显高于两种类似物——速灭威和异丙威。采用有机无机杂化方法得到的分子印迹聚合物对西维因具有良好的选择吸附能力。  相似文献   

5.
以沙拉沙星为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用本体聚合制备沙拉沙星的分子印迹聚合物。通过振荡吸附实验对模板分子和功能单体的比例进行优化。印迹聚合物和空白聚合物的等温吸附线表明,印迹聚合物形成的孔穴对沙拉沙星的吸附量高于空白聚合物。在吸附过程中模板分子沙拉沙星与印迹聚合物形成两种结合位点,两种结合位点的解离常数分别为0.321μg/mL和1.577μg/mL,对沙拉沙星最大表观吸附量分别为1.249mg/g和3.222mg/g。吸附动力学实验结果显示聚合物对沙拉沙星的吸附在7h达到平衡,选择性试验表明印迹聚合物对沙拉沙星具有较好的吸附特性。  相似文献   

6.
采用表面分子印迹技术,以氯霉素为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,制备氯霉素表面分子印迹聚合物。通过扫描电镜、等温吸附实验、Scatchard方程分析及吸附动力学实验对氯霉素分子印迹聚合物进行性能表征。结果表明,合成的分子印迹聚合物对氯霉素的最大吸附量为51μg/mg,有较好的特异性吸附,且吸附速率快,2 min即可达到吸附平衡。  相似文献   

7.
采用沉淀聚合法,以甲磺隆和氯磺隆为双模板分子,4-乙烯基吡啶为功能单体,二乙烯基苯为交联剂,乙腈为致孔剂,合成对29种磺酰脲类农药具有高选择性的分子印迹聚合物.通过扫描电镜、平衡吸附实验等对制备的印迹聚合物进行表征和测定.结果表明:分子印迹聚合物对29种磺酰脲类农药具有特异性吸附作用,其最大表观结合量为13.21 mg...  相似文献   

8.
以交联化壳聚糖微球为表面载体,水和乙腈为混合溶剂,将模板分子(喹乙醇),功能单体(丙烯酰胺)及交联剂(N,N’-亚甲基双丙烯酰胺)采用表面分子印迹与溶胶-凝胶法合成喹乙醇分子印迹聚合物(MIP)。并对新型水相分子印迹聚合进行红外光谱、扫描电镜、吸附动力学实验、吸附平衡实验、选择性实验的表征。实验结果表明:以壳聚糖为载体的分子印迹聚合物对喹乙醇的吸附容量为10.14mg·g-1,对喹烯酮的印迹效率因子为2.29,乙酰甲喹的印迹效率因子为2.22。以壳聚糖为载体的分子印迹聚合物具有较高识别选择能力,对喹乙醇具有快速吸附效果。  相似文献   

9.
为探寻大豆异黄酮类物质的富集分离的新方法和新思路,选用染料木苷和大豆苷含量总和为89.2%的大豆异黄酮为模板,采用沉淀聚合法,以4-乙烯基吡啶(4-VP)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,成功制备了分子印迹聚合物微球,并对微球进行了吸附静态学、吸附动力学、类特异选择性和结构表征研究。通过紫外光谱法研究了模板分子与功能单体的相互作用,结果显示4-VP和模板分子作用强烈,模板分子和4-VP最佳摩尔质量比为1:6。静态吸附实验表明印迹聚合物(MIP)与非印迹聚合物(NIP)相比,MIP对模板分子具有明显的特异性吸附。吸附动力学实验表明聚合物微球在5h内对模板分子达到饱和吸附。类特异选择性实验表明MIP对多种大豆异黄酮类单体组分具有明显的类特异性吸附,特异吸附量高。此印迹聚合物微球有望在大豆苷异黄酮富集、分离、检测方面得到广泛的研究和应用。  相似文献   

10.
利用硅胶颗粒为基质,在其表面接枝硅烷化试剂3-甲基丙烯酰氧基丙基三甲氧基硅烷(γ-MPS),进行硅烷化处理后,以链霉素为模板分子,甲基丙烯酸(MAA)为功能单体,N,N’-亚甲基双丙烯酰胺(MBA)为交联剂在颗粒表面合成分子印迹层,制备得到链霉素分子印迹聚合物(MIPMs)和空白聚合物(NMIPMs),并采用静态平衡结合法借助高效液相色谱-蒸发光散射(HPLC-ELSD)研究了聚合物对模板分子链霉素的吸附能力、结合动力学和选择特性。扫描电镜观察和红外光谱分析结果表明表面印迹层已经成功合成;吸附实验结果表明,MIPMs比NMIPMs对链霉素具有更强的吸附特性和更好的选择性。  相似文献   

11.
制备联苯三唑醇分子印迹聚合物(BMIP)并研究其特异识别能力。以联苯三唑醇为模板分子,α-甲基丙烯酸(MAA)为功能单体,采用本体聚合法合成分子印迹聚合物(MIP)。考察不同致孔剂对模板物质与功能单体相互作用力的影响,以及采用不同比例模板分子与功能单体合成的聚合物对联苯三唑醇的吸附量的影响,通过静态吸附实验研究吸附性能,并进行Scatchard分析。结果表明乙腈和四氢呋喃为致孔剂时,联苯三唑醇的最大吸收波长均发生红移,分别红移了5 nm和6 nm,且吸收峰均增强。由Scatchard分析可知,联苯三唑醇与MAA形成了两类结合位点,其解离常数KD1=3.16 mmol/L、KD2=107.53 mmol/L。四氢呋喃和乙腈更适合用于联苯三唑醇分子印迹聚合物的制备。合成的印迹聚合物对模板分子具有很强的亲和力和良好的识别能力,可以用做联苯三唑醇的分离材料。  相似文献   

12.
芦丁分子印迹聚合物的制备及其吸附性能的研究   总被引:1,自引:1,他引:0  
以芦丁为模板分子,以α-甲基丙烯酸(MAA)和丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用分子印迹技术在甲醇/水(V/V,1/4)溶剂中合成了芦丁分子印迹聚合物(MIPs),研究了不同功能单体及其用量和不同交联剂用量的聚合体系组成对印迹聚合物吸附特性的影响。对最佳比例制备的MIPs进行了吸附等温实验和Scatchard分析,其结合位点的离解常数Kd分别为105.26mg.L-1和1250mg.L-1,饱和吸附量Qmax分别为18.02mg.g-1和73.50mg.g-1。并利用红外光谱(IR)对分子印迹聚合物进行了表征。  相似文献   

13.
采用表面印迹法,以恩诺沙星为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在聚苯乙烯酶标板表面直接合成恩诺沙星分子印迹聚合物膜。通过傅立叶红外光谱分析、电镜扫描、吸附平衡结合实验、Scatchard方程分析及吸附动力学实验对恩诺沙星印迹聚合物膜进行性能表征。合成的分子印迹聚合物膜具有很好的印迹效果,对恩诺沙星有较高的特异性吸附,且传质速率快,由Scatchard方程分析可知,聚合物膜中含有两类吸附位点,其中高亲和力位点的平衡解离常数(Kd)为19.49μg/mL,饱和吸附容量(Qmax)为12.98μg/mL,低亲和力位点的Kd为277.78μg/mL,Qmax为98.14μg/mL,吸附位点的异质性并不会影响聚合物膜应用于竞争性免疫吸附分析。通过该方法合成的恩诺沙星特异性识别聚合物膜可以作为仿生抗体,应用于竞争性免疫吸附分析检测恩诺沙星在食品中的残留。  相似文献   

14.
以吡虫啉为模板分子,丙烯酸(AA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,甲醇为溶剂,悬浮聚合法制备吡虫啉分子印迹聚合物。采用正交分析确定优化合成配方为吡虫啉2 mmol,EDGMA 50mmol,甲醇150 mL,偶氮二异丁腈(AIBN)0.05 g,AA 8 mmol,此时聚合物有较大的饱和吸附量和加标回收率,分别为361 mg/g和94.6%。Scatchard分析表明,所得分子印迹聚合物存在2种不同的结合位点;与非印迹聚合物的吸附性能比较表明,该聚合物对吡虫啉有较好的特异性吸附能力。  相似文献   

15.
以丙酰胺为模板分子,采用N,N-二甲基甲酰胺为溶剂体系,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,合成出丙烯酰胺分子印迹聚合物,其中功能单体与模板分子的最佳摩尔比例为8:1,交联剂与模板分子最佳摩尔比为20:1,洗脱剂甲醇与乙酸的最佳体积比为9:1。吸附性试验研究结果表明,该分子印迹聚合物对底物丙烯酰胺有较强吸附性,且选择吸附性也较好。  相似文献   

16.
分子印迹技术是制备具有分子识别能力聚合物的技术.它在印迹分子存在的情况下功能性单体与交联剂共聚制得高交联的聚合物网络,移去印迹分子后就得到了对印迹分子具有分子记忆效应的分子印迹聚合物.作为一种新型的分离介质,在分离、环境分析和催化科学等领域中极具发展潜力.本实验研究了模板分子、功能单体、交联剂、溶剂等对印迹聚合物制备的影响.并对聚合物方法的优势进行了较为详细的讨论.通过紫外光度法研究了模板分子(CF)与功能单体(AA)的相互作用,预测聚合物的选择性和结合机理.  相似文献   

17.
以原花青B_2为模板分子,结合Al~(3+)的配位作用, 2-乙烯基吡啶为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二环己基甲腈(ACCN)为引发剂,甲醇为溶剂制备了原花青素-Al(Ⅲ)配位分子印迹聚合物。结果表明, n[模板分子(原花青素B_2)]︰n[金属配位化合物(Al~(3+))]︰n[功能单体(2-乙烯基吡啶)]︰n[交联剂(EGDMA)]=1︰3︰8︰40时,制备的聚合物吸附效果最好。在此条件下,原花青素B_2的吸附量可达205.3 mg/g,是非配位印迹聚合物吸附量(103.6 mg/g)的1.98倍,空白印迹聚合物(13.9 mg/g)的14.8倍,说明Al3+配位后聚合物吸附效果显著提升。  相似文献   

18.
《食品与发酵工业》2017,(12):99-107
以α-(羟基)-山椒素分子结构类似物为模板分子、2-乙烯基吡啶(2-vinylpyridine,2-Vpy)为功能单体、二甲基丙烯酸乙二醇酯(ethyleneglycol dimethacrylate,EDMA)为交联剂,按1∶4∶20的摩尔比合成了花椒麻味物质硅胶表面分子印迹聚合物,并以合成的硅胶表面分子印迹聚合物为固相萃取柱填料,制备了花椒麻味物质分子印迹固相萃取柱,确定了该固相萃取柱的最佳上样溶剂、淋洗溶剂及洗脱溶剂,用此固相萃取柱对花椒油树脂中的花椒麻味物质进行分离纯化。结果表明,该固相萃取柱对花椒麻味物质表现出优异的特异性吸附效果,可以分离纯化出相对纯度为93.66%的花椒麻味物质。  相似文献   

19.
本文以柠檬酸为碳源合成了荧光量子点(CQDs);以呋喃妥因(NFT)为模板分子,甲基丙烯酸为功能单体,正硅酸乙酯为交联剂,乙腈为致孔剂,合成了呋喃妥因分子印迹聚合物(NFT-CQDs-MIP)。用红外光谱法、扫描电镜和荧光光谱法对NFT-CQDs-MIP进行了表征。实验结果表明,NFT-CQDs-MIP对NFT有较好的特异性识别能力,适用于模拟环境水体中NFT的检测。  相似文献   

20.
以木犀草素-Zn(Ⅱ)配合物为模板分子,丙烯酰胺为功能单体,N-异丙基丙烯酰胺为温敏单体,N,N′-亚甲基双丙烯酰胺为交联剂制备木犀草素-Zn(Ⅱ)配位温敏分子印迹聚合物(thermo-sensitive molecularly imprinted polymers,TMIPs),分离箬叶黄酮碳苷。结果表明,TMIPs最佳制备工艺为模板分子、功能单体、温敏单体、交联剂摩尔比1∶4∶16∶30,其低临界溶解温度约为32℃,吸附性能符合Langmuir吸附模型和准一级动力学模型,TMIPs对木犀草素吸附量为36.06μmol/g,印迹因子为3.18,相对于芹菜素和芦丁,对木犀草素选择系数分别达到1.83和2.18,对温度响应灵敏,易于控制解吸。TMIPs用于分离箬叶黄酮碳苷,对牡荆苷、异牡荆苷、荭草苷、异荭草苷吸附量分别为32.99、27.73、35.16、36.05μmol/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号