首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.  相似文献   

2.
利用卫星资料分析我国北方东西部臭氧分布差异   总被引:2,自引:0,他引:2       下载免费PDF全文
利用SAGE Ⅱ和HALOE臭氧垂直分布资料和TOMS臭氧总量资料, 研究我国北方(45°~55°N和35°~45°N范围), 东部(105°~135°E) 和西部(75°~105°E) 大气臭氧总量和垂直分布特征和差异。结果表明:我国北方东部冬季、春季和秋季臭氧总量明显大于西部, 主要表现在平流层臭氧极大值附近及其以下高度臭氧含量东部比西部明显偏大, 这种差异在冬、春季尤为明显; 随着纬度的降低, 冬季和秋季臭氧总量东、西部差异减小, 但春季臭氧总量东、西部差异没有明显改变; 夏季, 在45°~55°N范围, 东、西部臭氧分布没有明显差异, 但在35°~45°N范围, 臭氧分布东、西部差异较明显, 臭氧总量东、西部差异达到20.6 DU, 16 km以下臭氧柱总量东、西部差异达到12.8 DU。该文还对导致我国东、西部臭氧分布差异的原因进行了分析。  相似文献   

3.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.  相似文献   

4.
大气臭氧垂直分布的电化学测量   总被引:10,自引:4,他引:10  
用球载电化学O_3探空仪于1990年6月20日测量了0—32km高度范围内大气臭氧的垂直分布.结果表明,大气臭氧的垂直分布具有多层次结构,在25km附近臭氧分压达最大值.从臭氧廓线推算出大气柱臭氧总含量为327.8D.U.  相似文献   

5.
We present here in situ measurements obtained between 1991 and 2011 in outer-vortex conditions by the ELHYSA balloon-borne frost-point hygrometer. The frost-point hygrometer profiles are used for comparisons with the satellite data from version 19 (v19) and version 3.3 (v3.3) of the HALogen Occultation Experiment (HALOE) and the Microwave Limb Sounder (MLS) respectively. Potential Vorticity mapping is applied to all data sets to remove contributions of transient tropical intrusions and polar vortex air masses and hence ensure consistent comparisons between the balloon and satellite observations. Our selected balloon in situ observations are too sparse to directly infer mid-latitude stratospheric time series for continuous comparisons with HALOE and MLS records or derive water vapour trends but can be used to validate the satellite data. A mean difference of ?0.83?±?1.58 % (?0.04?±?0.07 ppmv) is obtained between HALOE v19 data and the balloon frost-point observations (with respect to HALOE) over the 30–80 hPa altitude range. The hygrometer-HALOE differences appear time-dependent as already presented in the literature. The mean difference reaches 2.80?±?0.96 % (0.13?±?0.04 ppmv) for MLS v3.3, with MLS systematically wetter than the balloon data reflecting a systematic bias between both datasets. We use our balloon data as reference to provide some information about the HALOE-MLS difference. From post-2000 ELHYSA-HALOE and ELHYSA-MLS comparisons, we find a HALOE-MLS difference matching the expected bias, with MLS v3.3 6.60?±?2.80 % (0.27?±?0.11 ppmv) wetter than HALOE v19. From the results obtained from our balloon-satellite data comparisons, we finally discuss the issue about merging the HALOE and MLS data sets to provide stratospheric water vapour trends.  相似文献   

6.
Abstract

Carbonyl sulphide (OCS) is an important precursor of sulphate aerosols and consequently a key species in stratospheric ozone depletion. The SPectromètre InfraRouge d'Absorption à Lasers Embarqués (SPIRALE) and shortwave infrared (SWIR) balloon-borne instruments have flown in the tropics and in the polar Arctic, and ground-based measurements have been performed by the Qualité de l'Air (QualAir) Fourier Transform Spectrometer in Paris. Partial and total columns and vertical profiles have been obtained to study OCS variability with altitude, latitude, and season. The annual total column variation in Paris reveals a seasonal variation with a maximum in April–June and a minimum in November–January. Total column measurements above Paris and from SWIR balloon-borne instrument are compared with several MkIV measurements, several Network for the Detection of Atmospheric Composition Change (NDACC) stations, aircraft, ship, and balloon measurements to highlight the OCS total column decrease from tropical to polar latitudes. OCS high-resolution in situ vertical profiles have been measured for the first time in the altitude range between 14 and 30?km at tropical and polar latitudes. OCS profiles are compared with Atmospheric Chemistry Experiment (ACE) satellite measurements and show good agreement. Using the correlation between OCS and N2O from SPIRALE, the OCS stratospheric lifetime has been accurately determined. We find a stratospheric lifetime of 68?±?20 years at polar latitudes and 58?±?14 years at tropical latitudes leading to a global stratospheric sink of 49?±?14?Gg?S?y?1.  相似文献   

7.
Summary Umkehr observations taken during the 1957–2000 period at 15 stations located between 19 and 52° N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains ∼ 44,000 profiles and represent the longest (∼ 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44–52° N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter–spring at altitudes below 24 km; the lower stratospheric layers in the middle latitudes contain ∼ 62% of the total ozone and contribute ∼ 57% to its total variability. The layer-5 (between ∼ 24 and 29 km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only ∼ 11% to the total ozone variability. Meridional cross-sections from 19 to 52° N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone maximum. The deduced trends above 33 km confirm a strong ozone decline since the mid-1970s of over 5% per decade without significant seasonal differences. In the mid-latitude stations, the decline in the 15–24 km layer is nearly twice as strong in the winter-spring season but much smaller in the summer and fall. The effect of including 1998 and 1999 years with relatively high total ozone data reduces the overall-declining trend. The trends estimated from alg-99 retrievals are statistically not significantly different from those in WMO 1998a; however, they are stronger by about 1% per decade in the lower stratosphere and thus closer to the estimates by sondes. Comparisons of the integrated ozone loss from the Umkehr measurements with the total ozone changes for the same periods at stations with good records show complete concurrence. The altitude and latitude appearances of the long-term geophysical signals like solar (1–2%) and QBO (2–7%) are investigated. Received April 12, 2001 Revised September 19, 2001  相似文献   

8.
On the basis of data obtained by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) box model calculations are performed to investigate the ozone budget in the upper stratosphere. The HALOE data comprise measurements of major source gases and key chemical species involved in the ozone destruction cycles. In comparison to earlier calculations using version 17 of the HALOE data, the calculated ozone destruction rate increases when the updated data version 18 is used. However, as with the previous study using version 17 of the HALOE data, no evidence for a significant model ozone deficit is found.  相似文献   

9.
青藏高原平流层臭氧和气溶胶的变化趋势研究   总被引:2,自引:1,他引:2  
通过分析SAGEⅡ资料,发现青藏高原平流层臭氧存在递减趋势,15—50 km臭氧的变化对臭氧总量变化贡献最大,其中25—50 km和15—25 km两层的贡献大致相当。通过青藏高原和中国东部地区平流层臭氧变化的对比,清楚地看出:两地臭氧总量变化的差异主要是由于在15—25 km臭氧变化不同所致。5—7月臭氧变化趋势的情况与年平均的变化类似,两地臭氧变化的差异主要在平流层低层,即15—25 km。青藏高原平流层气溶胶面密度的时间变化序列显示:大的火山喷发对青藏高原平流层气溶胶具有重要影响,其影响可持续6年左右。从1997年至今,青藏高原18—25 km气溶胶面密度增加,最大的增长出现在23 km,每年大约增长4%—5%。而在16—17 km气溶胶的面密度出现减少趋势。与此同时,在37 km以下,青藏高原的温度出现递减的趋势,而且其递减速度比中国东部地区快;在37—50 km,温度出现增加的趋势,青藏高原的增温也比中国东部地区快。青藏高原平流层低层气溶胶的增加和温度的降低都将增强该区域非均相反应的作用。  相似文献   

10.
Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.Diurnal ozone variations are analyzed by averaging the years 1995–1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.  相似文献   

11.
A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measure- ments from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ± 10% ( ± 5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO 2 concentration are also investigated.  相似文献   

12.
An intercomparison campaign was conducted at the Observatoire de Haute Provence (OHP) in Southern France in September 1989 in order to compare the three instruments used for vertical tropospheric ozone profiling in the European TOR (Tropospheric Ozone Research Project) network: balloon borne ECC and Brewer-Mast sondes and a ground based UV-DIAL (DifferentialAbsorptionLidar). Additionally, a stratospheric lidar system and the Dobson spectrophotometer of the OHP were operated. Seven simultaneously measured vertical ozone profiles gave evidence for systematic differences of 15% between both types of electrochemical sondes in the troposphere, the Brewer-Mast sondes reading the smaller ozone values. These differences might be explained on the one hand by a possible contamination of the ozone sensor with reducing substances, causing a negative bias mainly for Brewer-Mast sondes and, on the other hand, by the evolution of the sonde background current during the flight, causing a positive bias for ECC sondes and a negative bias for Brewer-Mast sondes. The tropospheric lidar system, measuring the vertical ozone distribution between 6 and 12–15 km, showed ozone concentrations intermediate between the sonde results. This is in good agreement with its estimated systematic error of better than 7% in the upper troposphere. In the stratosphere, the differences between electrochemical sondes and the lidar are between 5 and 10% before the normalisation with the total ozone values measured by the Dobson spectrophotometer, and always below 5% after. While the Dobson normalisation thus corrects rather well the stratospheric part of the sonde profile, it only partially reduces errors occurring in the troposphere.  相似文献   

13.
利用探空资料验证GOME卫星臭氧数据   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1996年3月-2003年6月部分时段拉萨、西宁、北京3个站的臭氧探空资料验证了GOME(Global Ozone Monitoring Experiment)卫星臭氧廓线及对流层臭氧柱总量。对比结果表明:在对流层中下层,拉萨和西宁两地GOME与探空的平均偏差小于5%,北京地区平均偏差小于10%;在对流层上层/平流层下层,拉萨和西宁平均偏差小于10%,北京小于20%;在平流层中上层3个站的平均偏差均小于5%。在对流层上层/平流层下层区域,GOME与臭氧探空的平均偏差在北京明显高于拉萨和西宁。3个地区对流层柱总量的平均偏差都在10%以内,表明该资料可用于研究我国对流层臭氧总量的变化规律。同时段的GOME最低层(0~2.5km)月平均臭氧浓度对比结果显示,GOME结果同地面臭氧观测值有很好的相关性,GOME臭氧浓度反映了拉萨、瓦里关、临安地面臭氧浓度的主要变化特征。  相似文献   

14.
The stratospheric concentrations of many minor constituents change rapidly at sunrise or sunset. If this happens, there is an inherent error when retrieving the vertical profiles of the constituents from measurements of their absorption of sunlight. For retrievals of NO at sunset the error can be estimated from in-situ measurements alone, without appeal to a model of stratospheric photochemistry. Below 20 km this error can approach 100% so that the retrieved NO is zero. But at 40 km, and at 25 km when the absorption is strong and Lorentzian, it can be less than 20%. Precise calculations of the error, even if small, require model calculations of the sunset and sunrise changes. With a model, we have calculated the error for NO, NO2, OH and ClO.  相似文献   

15.
The results of lidar measurements of ozone profiles over Obninsk in the altitude range of 12–35 km in 2012–2016 are presented. Temporal variations in total ozone in the above altitude range and seasonal variations in the vertical distribution of ozone are considered. Basic attention is paid to the analysis of ozone profile variations on the daily and weekly scales. The backtrajectory analysis demonstrated that in most cases the formation of layers with low or high ozone values is explained by the direction of meridional advection. Cross-correlation coefficients for the variations in ozone and temperature relative to the current monthly mean variations are calculated. Rather high values of correlation coefficients (~0.4–0.6) are obtained for summer in the low stratosphere (100 and 160 hPa) and for winter in the upper troposphere (50 and 20 hPa). In general, variations in ozone profiles are consistent with available climatologic data.  相似文献   

16.
The European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) meteorology and measurements from the Microwave Limb Sounder, High Resolution Dynamics Limb Sounder, and Ozone Monitoring Instrument onboard the Earth Observing System Aura satellite were applied to analyze the dynamical and chemical features of a cutoff low (COL) event over northeast China in early July 2007. The results showed the polar stratospheric origin of an upper-level warm-core cyclone at 100--300 hPa, associated with a funnel-shaped tropopause intruding into the mid-troposphere just above the COL center. The impacts of the stratospheric intrusion on both column ozone and ozone profiles were investigated using satellite measurements. When the intensity of the COL peaked on 10 July 2007, the total column ozone (TCO) increase reached a maximum (40--70 DU). This could be dynamically attributed to both the descent of the tropopause (~75%) and the downward transport of stratospheric ozone across the tropopause (~25%). Analysis of the tropospheric ozone profiles provided evidence for irreversible transport/mixing of ozone-rich stratospheric air across the tropopause near the upper-level front region ahead of the COL center. This ozone intrusion underwent downstream transport by the upper tropospheric winds, leading to further increase in TCO by 12--16 DU over broad regions extending from east China toward the northern Japan Sea via South Korea. Meteorological analysis also showed the precedence of the stratospheric intrusion ahead of the development of cyclones in the middle and lower troposphere.  相似文献   

17.
A parameterized transmittance model(PTR) for ozone and water vapor monochromatic transmittance calculation in the solar-to-near-infrared spectrum 0.3-4 μm with a spectral resolution of 5 cm-1 was developed based on the transmittance data calculated by Moderate-resolution Transmittance model(MODTRAN).Polynomial equations were derived to represent the transmittance as functions of path length and airmass for every wavelength based on the least-squares method.Comparisons between the transmittances calculated using PTR and MODTRAN were made,using the results of MODTRAN as a reference.Relative root-mean-square error(RMSre) was 0.823% for ozone transmittance.RMSre values were 8.84% and 3.48% for water vapor transmittance ranges of 1-1×10 18 and 1-1×10 3,respectively.In addition,the Stratospheric Aerosol and Gas Experiment II(SAGEII) ozone profiles and University of Wyoming(UWYO) water vapor profiles were applied to validate the applicability of PTR model.RMSre was 0.437% for ozone transmittance.RMSre values were 8.89% and 2.43% for water vapor transmittance ranges of 1-1×10 18 and 1-1×10 6,respectively.Furthermore,the optical depth profiles calculated using the PTR model were compared to the results of MODTRAN.Absolute RMS errors(RMSab) for ozone optical depths were within 0.0055 and 0.0523 for water vapor at all of the tested altitudes.Finally,the comparison between the solar heating rate calculated from the transmittance of PTR and Line-by-Line radiative transfer model(LBLRTM) was performed,showing a maximum deviation of 0.238 K d-1(6% of the corresponding solar heating rate calculated using LBLRTM).In the troposphere all of the deviations were within 0.08 K d-1.The computational speed of PTR model is nearly two orders of magnitude faster than that of MODTRAN.  相似文献   

18.
In this paper we describe a technique for estimating chemical ozone loss in the Arctic vortex. Observed ozone and temperature profiles are combined with the model potential vorticity field to produce time series of vortex averaged ozone mixing ratios on chosen isentropic surfaces. Model-derived radiative heating rates and observed vertical gradients of ozone are then used to estimate the change in ozone that would occur due to diabatic descent. Discrepancies with the observed ozone are interpreted as being of chemical origin, assuming that there is negligible horizontal transport or mixing of air into the vortex. The technique is illustrated using ozone sonde measurements collected during the 1991/92 European Arctic Stratospheric Ozone Experiment (EASOE), meteorological analyses from the European Centre for Medium-range Weather Forecasts (ECMWF) and radiative heating rates extracted from the Global Atmospheric Modelling Programme (UGAMP) 3D General Circulation Model. Our results show that there was photochemical ozone destruction inside the Arctic vortex in early 1992 with a loss between 475 K and 550 K (around 20 km) of 0.32±0.15 ppmv in the first 20 days of January, equivalent to a rate of 0.51±0.24%/day (at the 95% confidence level).  相似文献   

19.
20.
OzoneVerticalProfileCharacteristicsoverQinghaiPlateauMeasuredbyElectrochemicalConcentrationCelOzonesondes①LiuQijun(刘奇俊),Zheng...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号