首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
It has been suggested that iodine oxides, IOx, could play a significant role in the ozone destruction in the lower stratosphere. To investigate this suggestion, spectra from nine SAOZ uv-visible spectrometer balloon flights were examined for the IO absorption signature between 405 and 450 nm. IO was not detected, either at mid- or high latitude, in the morning or the evening, in summer or winter. An upper limit of 0.2 parts per trillion by volume (pptv) at 20 km and 0.1 pptv at 15 km at the 95% confidence level (2), was derived from the best measurements at 90° SZA at sunset and sunrise. Since a photochemical model shows that 70% of inorganic iodine should be in the form IO at that time, it is concluded that unless iodine chemistry is different from that assumed at the moment, the role of iodine in stratospheric ozone depletion is small.  相似文献   

2.
In July 1974 an NO/O3 chemiluminescent instrument was used to obtain measurements of NO in the stratosphere during two balloon flights launched from Churchill (59°N, 95°W). On the first flight, an altitude profile was obtained in which the NO volume mixing ratio was observed to increase from 0.3 to 2.7 ppbv between 19 and 29.5 km. On the second flight, the mixing ratio was observed to increase from 0.25 to 2.7 ppbv between 19 and 29 km and to remain almost constant at about 2.7 ppbv from 29 to 34.5 km. On this flight, the sunset decay of NO was also obtained while the payload was at a constant float altitude of 34.5 km. These decay measurements are compared satisfactorily with the results obtained from a time dependent stratospheric model.  相似文献   

3.
Abstract

The importance of measurements of the vertical distribution of odd nitrogen in studies of ozone chemistry and climate change has long being recognized. In this paper, we use the optimal estimation method developed by Rodgers (1976, 1990) to retrieve NO2 vertical profiles from slant column observations made with a portable ultraviolet (UV)‐visible zenith‐sky spectrometer operated on the ground during the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) balloon campaign carried out at Vanscoy, Saskatchewan, Canada (52°N, 107°W), from 18 to 25 August 1998. Late summer was chosen for the campaign because the stratospheric zonal wind velocity changes sign at that time. Under such conditions the stratospheric winds are at a minimum, leaving the stratosphere in a dynamically quiescent state and closer to photochemical control (Fahey et al., 2001; Fioletov and Shepherd, 2003). The NO2 profile retrieved from the ground‐based observations is compared with the co‐located and simultaneous NO2 profile measured by a balloon‐borne UV‐visible spectrometer during sunrise on 24 August. Good agreement is observed, giving us confidence in the retrieval technique adopted. The retrieved NO2 profiles are also compared with the output of the Model for Evaluating oZONe trends (MEZON) 3D stratospheric chemical transport model. It is observed that, for altitudes below the peak concentration, the model underestimates the NO2 amount, and at the altitude of peak concentration, the model values lie between the values measured from the balloon and those retrieved from the ground‐based measurements. Nevertheless, the model reproduces the general shape of the retrieved profiles, including the altitude of the NO2 maximum, for both sunrise and sunset conditions.  相似文献   

4.
Compact two-channel IR radiometers for solar occultation experiments have been constructed in order to measure concentration profiles of stratospheric trace gases. The instruments can be used as filter-or gas correlation-type radiometers depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the gas correlation-type measurements, profiles of the trace gas NO2 are inferred for the altitude region between about 20 km and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the NO2 profiles. The derived profiles are compared among themselves and are assessed against the observations of other authors by accounting for the diurnal, latitudinal and seasonal changes of NO2. As a by-product of our measurements, the mean absorption of the O2 collision-induced band at 6.4 m was determined within the range of the interference filter used and compared with calculations based on known absorption coefficients.  相似文献   

5.
Vertical profiles of stratospheric HO2 and NO2 concentrations were determined using matrix isolation and ESR. Up to 10 different samples per flight were collected in situ by a balloon borne cryosampler. Free radicals and trace constituents which are condensable at 68 K are trapped in a polycristalline H2O or D2O matrix. After collection, the samples are stored at a temperature below 83 K until they are analysed in the laboratory by X-band ESR spectroscopy at 4 K. The HO2 and NO2 were identified and calibrated by comparison with standard samples collected in the laboratory under typical stratospheric sampling conditions. From several flights over Southern France (44°N) we obtained two profiles of the stratospheric NO2 mixing ratio. One, from 21 October 1982, agrees well with previous measurements. The other, from 8 October 1981, is lower by one order of magnitude. The few HO2 data obtained around 35 km altitude agree with previous measurements. An isolated measurement at 17 km altitude is one order of magnitude higher than the model predicted HO2 concentration.  相似文献   

6.
The simultaneous measurements of NO, NO2 and HNOA mixing‐ratio profiles carried out on the Stratoprobe balloon flight of 22 July 1974 have been simulated with a time‐dependent model using the measured temperature and ozone profiles. The calculated ratios of NO/NO2, HNO3/NO2 using currently accepted photochemistry are consistent with the measured ratios within the experimental errors of the measurements. The measured NO2/NO ratio is almost a factor of two smaller than predicted, although the discrepancy is still within the experimental errors. A remarkable proportionality in the NO2 and O3 profiles has been noted and is unexplained. A time‐dependent simulation has been employed to convert the measurements into diurnally‐averaged profiles suitable for intercomparison with two‐dimensional stratospheric models and a comparison with constituent profiles from Prinn et al. (1975) is carried out as an example. The NOV mixing ratio, formed from the sum of the NO, NO2 and HNO2 measurements is similar to the NOV mixing ratio from several one‐ and two‐dimensional models used to predict the effects of SST's on the ozone layer. The odd nitrogen mixing ratio is roughly constant from 20 to 35 km at 11 ppbv.  相似文献   

7.
During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35km, where measurements overlapped, agreement between NO profiles was within ±30%, which is better than the accuracies claimed by the experimenters. Between 35 and 40km there was similarly good agreement between NO2 profiles, but below 30km, differences of greater than a factor three were found. In the second Campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; but the first Campaign and the column measurements show a more uniform spread of results.These differences below 30km could not be resolved, but new laboratory measurements are planned which should do so.  相似文献   

8.
Summary Two complex models to determine photolysis frequencies for chemical transport models are used to study the effects of input data and the consideration of relevant physical processes on the derived photolysis frequencies. Within the model CTM photolysis frequencies are calculated on a coarse latitudinal grid with climatological input data (monthly mean or seasonal mean values) and are then interpolated linearly in space to derive photolysis frequencies for each grid cell of the chemical transport model. These clear sky photolysis frequencies are then corrected to account for cloud effects. The model STAR calculates photolysis frequencies for each grid cell considering the relevant physical processes on the basis of actual profiles computed with a mesoscale meteorological model and other available geophysical data.The comparison of the O3 and NO2 photolysis frequencies shows that the approach used within the CTM model compares to STAR only under certain conditions, as climatological input data can be less suitable for episodic photolysis frequencies calculations. The ozone column content significantly alters the photolysis frequency of ozone itself and climatological Dobson data limit the quality of the calculations. The temperature dependence of the quantum yields and the absorption cross sections lead to increased uncertainties when climatological temperature profiles are used. This is especially the case for sunrise/sunset conditions. The use of one surface albedo for all landuse types and seasons within the CTM model restricts the quality of the calculations close to the surface. If clouds are present the CTM model over-/underestimates the cloud effects on the photolysis frequencies and differences up to an order of magnitude are found for below cloud values.With 11 Figures  相似文献   

9.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

10.
Measurements of stratospheric NO2 by ground-based visible spectrometers rely on laboratory measurements of absorption cross-sections. We review low-temperature laboratory measurements, which disagree by amounts claimed to be significant. Our recalculation of their errors shows that in general disagreements are not significant and that errors in the ratios of cross-sections at low to room temperature are between ±3% and ±8.8%. Of these errors, up to ±3.5% was contributed by errors in the equilibrium constant,K p, in those measurements where the pressure was above 0.1 mbar.We review measurements and calculations ofK p, which were accurate to ±5% from 300 to 233 K. Each method was potentially flawed. For example, infrared measurements of the partial pressure of NO2 ignored the dependence of absorption on total pressure. From thermodynamic theory, formulae forK pcan be derived from expressions for the variation of heat capacity with temperature. Contrary to common belief, coefficients in the formulae used by spectroscopists were not derived from the thermodynamic quantities. Rather, they were fitted to measurements or to calculations. Hence, they are empirical and it is dangerous to extrapolate below 233 K, the lowest temperature of the measurements.There are no measurements of NO2 cross-sections below 230 K. Extrapolation of these cross-sections to analysis of measurements of NO2 at the low temperatures of the Arctic and Antarctic stratosphere is also dangerous. For satisfactory analysis of polar spectra, the NO2 cross-sections should be measured at temperatures down to 190 K with a relative accuracy of ±1%. This difficult experiment would need a cell of minimum length 32 m whose length can be adjusted. Because their effects are circular, many errors cannot be removed simply. Although circular errors also arise in the measurements ofK pand of the infrared spectrum, their weights differ from those in the visible spectrum. The optimum experiment might therefore simultaneously measure the visible and infrared spectra andK p.  相似文献   

11.
Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052 cm–1 resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44° N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246 cm–1 band. Assuming a total intensity of 4.32×10–17 cm–1/molecule cm–2 independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10–9), interpolated to 2 km height spacings, are 1.64±0.49 at 37.5 km, 1.92±0.56 at 35.5 km, 2.06±0.47 at 33.5 km, 1.95±0.42 at 31.5 km, 1.60±0.33 at 29.5 km, 1.26±0.28 at 27.5 km, and 0.85±0.20 at 25.5 km. Error bars indicate the estimated 1- uncertainty including the error in the total band intensity (±20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.Laboratoire associé aux Universités Pierre et Marie Curie et Paris Sud.  相似文献   

12.
The heterogeneous removal of N2O5 by sulphuric acid aerosols as been invoked to explain the decline of mid-latitude ozone in the last decade. We have used a photochemical model to study measurements of odd-nitrogen made by Spacelab 3. The gas-phase photochemical model overestimates the amount of N2O5 present. The loss of N2O5 by aerosols does reduce N2O5, but is likely to be slower than assumed in WMO (1992). The sunset measurements at 25.5 km cannot be explained by heterogeneous loss of N2O5 and is more likely to be due to a faster photolysis than assumed. New absorption cross-sections of HNO3 reduce the photolysis of HNO3 so that the model with gas-phase chemistry only gives better agreement at 19 km, than a model including heterogeneous chemistry.  相似文献   

13.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Experiment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets, an empirical model for estimating the vertical distribution of stratospheric ozone over China is proposed. By using this model, the vertical distribution of stratospheric (16–50 km) ozone can be estimated according to latitude, month and total ozone. Comparisons are made between the modeled ozone profiles and the ...  相似文献   

14.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

15.
In 1978–1980 nine aircraft flights to an altitude of up to 15 km were made over western Europe. Sulfur dioxide was measured with a sensitive chemiluminescence method consisting of separate sampling and analysis stages and application of a wet chemical filter procedure (detection limit: 8 pptv SO2).The measurements performed in the upper troposphere and lower stratosphere lead to some unexpected results: (a) the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio; (b) between the 500 mb and the actual tropopause level the SO2 mixing ratio is found to be <100 pptv, and weak vertical gradients of SO2 suggest only a small flux of tropospheric SO2 into the stratosphere; (c) increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric source of SO2.In the light of improved one-dimensional models considering the vertical distribution of stratospheric sulfur compounds (Crutzen, 1981; Turco et al. 1981) it can be shown that the oxidation of organic sulfur compounds (e.g., OCS, CS2) seems to be a stratospheric source of SO2. Furthermore, the flux calculations based on the SO2 mixing ratios measured at the tropopause level indicate that the contribution of tropospheric (man-made) SO2 to the stratospheric aerosol layer is of only minor importance.  相似文献   

16.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

17.
Using satellite data, the variability of a large number of stratospheric trace constituents can be estimated. These constituents need not themselves be measured by the satellite; their concentrations can be derived using photochemical steady-state relationships. The global coverage provided by the satellite over a long time period means that, for example, monthly zonal mean profiles can be derived. This has been done for H, OH, HO2, H2O2, Cl, ClO, HCl, HOCl, ClONO2, NO and O. The standard deviation of these quantities is a measure of their variability. We argue that comparing theoretical variability estimates with measurements is a better test of a photochemical theory than simply the comparison of single modelled and observed profiles.  相似文献   

18.
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.  相似文献   

19.
Eleven vertical profiles of stratospheric NO3 have been obtained since 1992 using the AMON and SALOMON balloon-borne UV-visible spectrometers. The measurements are compared to the SLIMCAT 3D model and calculations based on the steady-state hypothesis for NO3. The calculations cannot reproduce some parts of the profiles which exhibit strong concentration fluctuations over few kilometres, as a consequence of the dependence of NO3 on local temperature variations. A statistical use of the data allows us to estimate the influence of the temperature dependence of the absorption cross-section on the data analysis, and the validity of the recommended reaction rates available in the literature. Discrepancies exist between the model based on recommended kinetics and observations at warmer temperatures. Nevertheless, the analysis is biased by local temperature inhomogeneities, and only a low-resolution vertical shape of the NO3 profiles can be retrieved.  相似文献   

20.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号