首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
热电材料—即实现热能和电能之间直接相互转换的一类功能材料,提供了一种制冷或发电的新方法—在解决能源和环境危机问题上正在扮演越来越重要的角色。传统的三维材料中,由于几个决定热电性能的关键物理参数相互关联,使得现有热电材料很难获得较高热电优值(ZT)。金属氧化物热电材料由于其良好的耐高温性能,是中高温区使用的理想候选者。如果能提高氧化钛基化合物的热电优值,那么氧化钛基化合物将是一类非常优秀的热电材料,因为其不仅具有优良的化学稳定性和热稳定性,而且原材料丰富、不含有毒元素以及制备工艺简单。纳米化能显著降低材料的热导率,是最近二十年提高热电性能的一条主要途径。同时,通过界面和化学组成调控增加与电学性能相关的功率因子也是一种继续提高热电性能的重要方法。本文综述了我们近期对氧化钛基热电材料的研究成果,包括对钛酸盐纳米管较大赛贝克(Seebeck)系数的实验发现,提出利用一维纳米材料独特的空心结构和纳米管层状特殊构造,将两个相关联的物理参数(热导率和电导率)分别调控;通过合成氧化钛基纳米复合材料,研究界面对载流子和声子散射的作用,提出通过载流子能量过滤效应提高其热电性能;采用尿素燃烧法和高温烧结等方法合成具有纳米结构和化学组成调控的氧化钛基化合物,认识化学组成以及界面对声电输运的作用规律;最后介绍能显著提高热电材料功率因子的载流子非对称迁移的理论。  相似文献   

2.
Most of the current thermal power-generation technologies must first convert thermal energy to mechanical work before producing electricity. In this study, a direct heat to electricity (DHE) technology using the thermoelectric effect, without the need to change through mechanical energy, was applied to harvest low-enthalpy thermal work. Such a power generation system has been designed and built using thermoelectric generator (TEG) modules. Experiments have been conducted to measure the output power at different conditions: different inlet temperature and temperature differences between hot and cold sides. TEG modules manufactured with different materials have also been tested. The power generator assembled with 96 TEG modules had an installed power of 500 W at a temperature difference of around 200 °C. An output power of over 160 W has been generated with a temperature difference of 80 °C. The power generated by the thermoelectric system is almost directly proportional to the temperature difference between the hot and the cold sides. The cost of the DHE power generator is lower than that of photovoltaics (PV) in terms of equivalent energy generated.  相似文献   

3.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

4.
半导体温差发电技术在低品位余热回收技术领域具有重要的应用价值。汽车尾气温度高,带走的热量约占发动机总量的40%,温差发电技术能直接将废热能量转化为电能回收利用。介绍温差发电装置的设计原理,结构参数对性能影响以及装置输出性能参数,并结合试验对温差发电装置的传热性能和电功率输出性能进行分析以及提出有效的改进方案。  相似文献   

5.
Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties andZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.  相似文献   

6.
Two-thirds of input energy for electricity generation in the USA is lost as heat during conversion processes. Additionally, 12.5% of primary fuel and 20.3% of electricity are employed for space heating, water heating, and refrigeration where low-grade heat could suffice. The potential for harnessing waste heat from power generation and thermal processes to perform such tasks is assessed. By matching power plant outlet streams with applications at corresponding temperature ranges, sufficient waste heat is identified to satisfy all USA space and water heating needs. Sufficient high temperature exhaust from power plants is identified to satisfy 27% of residential air conditioning with thermally activated refrigeration, or all industrial refrigeration and process heating from 100 to 150 °C. Engine coolant and exhaust is sufficient to satisfy all air conditioning and 68% of electrical demands in vehicles. Overall, this study demonstrates the potential to reduce USA primary energy demand by 12% and CO2 emissions by 13% through waste heat recovery. A detailed analysis of thermal energy demand in pulp and paper manufacturing is conducted to demonstrate the methodology for improving the fidelity of this approach. These results can inform infrastructure and development to capture heat that would be lost today, substantially reducing USA energy intensity.  相似文献   

7.
A thermoelectric generator (TEG) module is designed to harvest low grade waste heat from a 2 kW fuel cell vehicle and improve its energy utilization. The module integrates a TEG cell with a heat pipe and a finned heat sink. A numerical model is developed based on an experiment setup where the fuel cell temperature is 45–60 °C while the cruise speed is 25 kmh?1. The numerical model is validated with less than 5% deviation. Extended cases are simulated for series and parallel power train configuration under changes to the waste heat temperature and vehicle speeds to evaluate the power and heat recovery ratio. A single TEG cell output between 2 and 3 W is achievable even at low grade heat. The parallel drive generates 50% more power than the series drive at 100 kmh?1 speed. A 2% heat recovery is theoretically achievable for a 16 cell module assembly.  相似文献   

8.
针对空间核电转换系统静态热电转换发电效率低的问题,设计开发了一种新型的热离子-碱金属混合发电系统,即利用热离子转换系统的余热作为碱金属转换器的热源,利用余热进行二次发电以提高转换系统效率,通过建立热离子-碱金属混合发电系统数理模型,研究了热离子热电转换系统接收极功函数和系统电流密度对混合发电系统功率效率的影响,得到了两个参数的最优区间,计算结果表明热离子-碱金属混合发电系统相比于热离子热电转换系统效率约6%~10%,为静态热电转换系统的效率优化提供了理论依据。  相似文献   

9.
Dan Dai  Yixin Zhou  Jing Liu 《Renewable Energy》2011,36(12):3530-3536
A new type of thermoelectric generator (TEG) system based on liquid metal which serves to harvest and transport waste heat, is proposed in this paper. To demonstrate the feasibility of the new TEG system, an experimental prototype which combined commercially available thermoelectric (TE) modules with the electromagnetic pump was set up. Output voltage from TE modules and temperature changes of the main parts (waste heat source, liquid metal heating plate, water-cooling plates I and II) of the liquid metal based TEG system were experimentally measured, as well as the flow rate of cooling water and the load resistance. It was shown that the maximum open-circuit voltage of 34.7 V was obtained when the temperature of the waste heat source was 195.9 °C and the temperature gap between liquid metal heating plate and cooling-water plates was nearly 100 °C. These experimental results obviously verify that using liquid metal based TEG system for waste heat recovery is highly feasible. In addition, the TEG system performance is discussed and a calculated efficiency of 2% in the whole TEG system is obtained. Possible suggestions to further improve this type of generator in the future are given.  相似文献   

10.
Experimental results for hydrogen storage tanks with metal hydrides used for load leveling of electricity in commercial buildings are described. Variability in electricity demand due to air conditioning of commercial buildings necessitates installation of on-site energy storage. Here, we propose a totalized hydrogen energy utilization system (THEUS) as an on-site energy storage system, present feasibility test results for this system with a metal hydride tank, and discuss the energy efficiency of the system. This system uses a water electrolyzer to store electricity energy via hydrogen at night and uses fuel cells to generate power during the day. The system also utilizes the cold heat of reaction heat during the hydrogen desorption process for air conditioning. The storage tank has a shell-like structure and tube heat exchangers and contains 50 kg of metal hydride. Experimental conditions were specifically designed to regulate the pressure and temperature range. Absorption and desorption of 5,400 NL of hydrogen was successfully attained when the absorption rate was 10 NL/min and desorption rate was 6.9 NL/min. A 24-h cycle experiment emulating hydrogen generation at night and power generation during the day revealed that the system achieved a ratio of recovered thermal energy to the entire reaction heat of the hydrogen storage system of 43.2% without heat loss.  相似文献   

11.
Microheat pipe cooled reactor power source (HRP) designed for space or underwater vehicles meets the future demands, such as safer structure, longer operating time, and fewer mechanical moving parts. In this paper, potassium heat pipe cooled reactor power source system which generates 50 kWe electricity is proposed. The reactor core using uranium nitride fuel is cooled by 37 potassium high‐temperature heat pipes. The shields are designed as tungsten and water, and reactor reactivity is controlled by control drums. The thermoelectric generator (TEG) consists of thermoelectric conversion units and seawater cooler. The thermoelectric conversion units convert thermal energy to electric energy through the high‐performance thermoelectric material. A code applied for designing and analyzing the reactor power system is developed. It consists of multichannel reactor core model, heat pipe model using thermal resistance network, thermoelectric conversion, and thermal conductivity model. Then, the sensitivity analysis is performed on two key parameters including the length of the heat pipe condensation section and the cold junction temperature of the TE cell. Meanwhile, the steady‐state calculations are conducted. Results show that the maximum fuel temperature is 938 K located in the center of reactor core and the outlet temperature of coolant reaches 316 K. Both of them are within the limitation. It is concluded that the preliminary design of HPR design is reasonable and reliable. The designed residual heat removal system has sufficient safety margin to release the decay heat of the reactor. This research provides valuable analysis for the application of micronuclear power source.  相似文献   

12.
Thermoelectric generator is among the earliest initiated electricity‐harvesting methods. It is a very potential power harvester that can convert wasteful thermal energy into electricity. However, it often suffers from low energy conversion rate due to its inconsistent heat source, inefficient thermoelectric material (or thermoelement) performance, and incompetent structural issues. Progressively for the first time, detailed methodological surveys and analyses are made for bulk, thick, and thin films in this review. This is in order to accommodate better insights and comprehensions on the emerging trends and progresses of thermoelectric generators from 1989 to 2017. The research interests in thermoelectric generators have started back in 1989, and have continuously experienced emerging progresses in the number of studies over the last years. The methodological reviews and analyses of thermoelectric generator showed that almost 46.6% of bulk and 46.1% of thick and thin film research works, respectively, are actively progressed in 2014 to 2017. Nearly 86.2% of bulk and 44.1% of thick and thin film thermoelectric generators are realizing in between 0.001 and 4 μW cm?2 K?2, while 43.1% of thick and thin films are earning among 10?6 to 0.001 μW cm?2 K?2. The highest achievement made until now is 2.5 W cm?2 at a temperature difference of 140 K and thermoelectric efficiency factor of 127.55 μW cm?2 K?2. This achievement remarked positive elevation for the field and interest in thermoelectric power generation. Consecutively, the research trends of fundamental devices' structure, thermoelement, fabrication, substrate, and heat source characteristics are analyzed too, along with the desired improvement highlights for the applications of thermoelectric generators.  相似文献   

13.
Thermal energy storage system is of great significance for the concentrated solar power system to keep the balance between power generation and demand. Metal hydride based thermal energy storage system is regarded as a promising method due to its good reversibility, low cost, and no by-product. Multi-phase heat exchange has much higher heat transfer coefficient than single-phase fluid heat exchange, thus facilitating the steam generation. In this study, a two-dimensional model of the metal hydride reactor using multi-phase heat exchange is proposed to estimate the performance and its feasibility of application in the concentrated solar power system. The results show that the velocity of the heat transfer fluid should match well with the thermal conductivity of the metal hydride bed to maintain the heat flux at a relatively constant value. The match of thermal conductivity of 3 or 5 W/(m·K) and fluid velocity of 0.0050 m/s results in the heat flux up to about 19 kW/m2, which is increased by 3 orders of magnitude than single-phase heat exchange. In the thermal energy storage system, the reheating cycle is recommended to improve the utilization of the thermal energy. The efficiency of the system could be improved from 18.4% to 30.8% using the reheating cycle. The increased efficiency is comparable to the previously reported efficiency of 39.2%. Besides, the operation strategy of raising the steam temperature by increasing the hydrogen pressure or the superheater temperature is suggested for the system to obtain higher efficiency.  相似文献   

14.
Thermoelectric generation technology, due to its several kinds of merits, especially its promising applications to waste heat recovery, is becoming a noticeable research direction. Based on basic principles of thermoelectric generation technology and finite time thermodynamics, thermoelectric generator system model has been established. In order to investigate viability and further performance of the thermoelectric generator for waste heat recovery in industry area, a low-temperature waste heat thermoelectric generator setup has been constructed. Through the comparison of results between theoretic analysis and experiment, reasonability of this system model has been verified. Testing results and discussion show the promising potential of using thermoelectric generator for low-temperature waste heat recovery, especially in industrial fields. Several suggestions for system performance improvement have been proposed through the analysis on this system model, which guide optimization and modification of this experimental setup. By integrating theoretic analysis and experiment, it is found that besides increasing waste heat temperature and TE modules in series, expanding heat sink surface area in a proper range and enhancing cold-side heat transfer capacity in a proper range can also be employed to enhance performance of this setup.  相似文献   

15.
P. Saneipoor  G.F. Naterer  I. Dincer 《Energy》2011,36(12):6879-6889
This paper examines the performance of a new Marnoch heat engine, which uses dry air and a pneumatic piston assembly to convert thermal energy to electricity. The system has unique capabilities of operating over temperature differentials less than 100 K. Unlike a common Stirling engine, the heat exchangers and piston assembly are not co-located, which is beneficial for positioning of heat exchangers in various configurations. This paper presents an operational laboratory-scale, proof-of-concept Marnoch heat engine (MHE), including its performance and power generation capabilities. It also presents a thermodynamic analysis of the system. Based on the MHE results, component modifications are made to improve its performance. The configuration has an efficiency of about thirty percent of a Carnot heat engine operating in the temperature range between 272 K and 372 K. Experimental data is acquired to provide verification of the predictive model, as well as demonstration of the MHE’s capabilities for efficient generation of electricity from waste heat sources.  相似文献   

16.
温差发电技术及其在节能领域的应用   总被引:8,自引:1,他引:7  
郑艺华  马永志 《节能技术》2006,24(2):142-146
温差发电技术是利用热电转换材料直接将热能转化为电能的发电技术,具有无运动部件、体积小、重量轻、移动方便和可靠性高等特点,是绿色环保的发电方式。随着能源与环境问题的日益突出,温差发电技术在节能领域的应用日新月异,它是合理利用太阳能、地热能、海洋温差、余热和废热等热能转换为电能的有效方式。  相似文献   

17.
熔融盐是一种非常有前景的高温液体传热蓄热工质,在太阳能热发电、余热回收及工业热利用方面有显著的优势,但是熔融盐本身存在导热性能不高等问题。本文对纳米复合相变材料固液相变储能过程的若干最新研究进行了回顾,综述了熔融盐纳米固液相变复合材料国内外研究现状及发展趋势,最后对纳米复合相变材料固液相变储能过程的未来发展和重点研究方向进行了展望,认为主要解决纳米复合材料内熔化相变传热双温度模型的建立及求解、NC-PCM的制备工艺、金属纳米粒子的团聚性及NC-PCM蓄热器的热循环实验等方面的问题是未来研究的重点。  相似文献   

18.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   

19.
《Journal of power sources》1998,73(2):193-198
A procedure is developed to assess the potential of thermoelectric modules when used for electrical power generation. The generating performance of a thermoelectric module is evaluated in terms of its power output, conversion efficiency and reliability, while the potential for improving its performance is investigated based upon the power-per-area, cost-per-watt and manufacture quality factor. The methods employed in determining these parameters are described and used to evaluate several commercially available modules. The results show that a thermoelectric module is a promising device for low temperature waste heat recovery.  相似文献   

20.
The current article discussed the detail design and development of an experimental test rig to derive usable energy by utilizing the waste heat energy through a heat exchanger made of Bi2Te3 material. The accuracy including the efficiency of the fabricated device is demonstrated further by verifying the associated parameter through a simulation model (commercial finite element package, ANSYS 15.0). To imitate the waste hot air from the industry is achieved via a heat gun and fed to the test rig for the generation of thermoelectric power. The simulation model accuracy has been demonstrated by juxtaposing the associated experimental data and computational readings. Subsequently, the feasibility and optimum range of design parameters are established by comparing the experimental and the simulation data (triggered temperature difference, voltage output, and heat flux) generated at the interface of the thermoelectric power generators. In addition, the coefficient of determination (R2) value has been evaluated statistically and verified with the current experimental results for the demonstration of the relevancy. The statistical study shows the existence of the correlation between the current experimental and the simulation model. Also, the experimental result indicates the possible implementation of the newly developed system for the recovery from the waste heat either the automobile exhaust or any other kind of dissipated heat from the industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号