首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 635 毫秒
1.
针对现有误差元素灵敏度分析与后续误差补偿关联性不强的问题,建立运动轴几何误差贡献值模型并提出运动轴几何误差灵敏度分析方法,以获得本身几何误差对机床精度有很大影响的关键运动轴。结合指数积理论和坐标系微分运动理论建立基于误差敏感矩阵的运动轴几何误差贡献值模型,各运动轴几何误差贡献值相加得到机床综合误差模型;计算各运动轴误差权重分量和误差综合权重实现运动轴误差灵敏度分析,选择误差综合权重平均值最大的运动轴为机床关键运动轴,并对关键运动轴的误差补偿方法进行分析讨论。最后,在北京精雕集团的五轴加工中心上进行仿真实验验证。研究结果表明:所建立模型和所提出分析方法是有效的,且只补偿关键运动轴的几何误差贡献值能有效地提高五轴机床加工精度。  相似文献   

2.
本文提出一种新的机床位置误差灵敏度分析方法。 首先基于多体理论和齐次变换矩阵建立了五轴龙门机床位置误差 模型。 其次通过截断傅里叶技术来表征与位置有关的几何误差参数,每个误差参数对位置误差的灵敏度值可表示为其傅里叶 幅值平方。 然后归一化处理,关键的几何误差参数为第 2,3,8,15 和 26 项误差。 通过与传统的 Sobol 法对比,仿真结果表明两 种灵敏度分析方法辨识的关键几何误差相同且灵敏度值相近。 此外,本文提出的灵敏度分析计算效率优于传统 Sobol 法。 最 后为了验证关键几何误差的有效性,提出了一个关于机床关键几何误差的补偿实验。 实验结果表明,补偿关键几何误差后机床 的加工精度提升了 48% 。 因此,本文提出的机床位置误差灵敏度分析方法是可行的和有效的。  相似文献   

3.
针对现有误差元素灵敏度分析与后续误差补偿关联性不强的问题,建立运动轴几何误差贡献值模型并提出运动轴几何误差灵敏度分析方法,以获得本身几何误差对机床精度有很大影响的关键运动轴。结合指数积理论和坐标系微分运动理论建立基于误差敏感矩阵的运动轴几何误差贡献值模型,各运动轴几何误差贡献值相加得到机床综合误差模型;计算各运动轴误差权重分量和误差综合权重实现运动轴误差灵敏度分析,选择误差综合权重平均值最大的运动轴为机床关键运动轴,并对关键运动轴的误差补偿方法进行分析讨论。最后,在北京精雕集团的五轴加工中心上进行仿真实验验证。研究结果表明:所建立模型和所提出分析方法是有效的,且只补偿关键运动轴的几何误差贡献值能有效地提高五轴机床加工精度。  相似文献   

4.
机床几何误差是影响机床加工精度的主要因素之一,本文针对机床几何误差建模、几何精度灵敏度分析、筛选关键几何误差等问题进行研究。结合多体系统理论和齐次坐标变换建立三坐标数控机床的几何误差模型,求解机床空间位置误差表达式。使用雷尼绍XL-80激光干涉仪对三坐标数控机床进行几何误差测量试验,将测量结果导入九线法误差辨识模型,辨识三坐标数控机床的21项几何误差。应用Simlab软件中的拓展傅里叶幅值灵敏度检验方法(EFAST)对三坐标数控机床的几何误差进行灵敏度分析,并筛选出影响三坐标数控机床加工精度的关键几何误差。此外,以关键几何误差为基础,建立三坐标数控机床的简化几何误差模型,与三坐标数控机床的几何误差模型进行对比分析。结果表明,该方法可合理经济地提高三坐标数控机床加工精度及几何误差补偿。  相似文献   

5.
《工具技术》2017,(12):140-143
为了提高某龙门铣床y、z向的加工精度,研究了该机床y、z轴关键几何误差的建模、辨识及补偿方法。建立了y、z轴几何误差和加工误差之间的误差模型,得到了影响龙门铣床y、z向加工精度的5项关键几何误差;通过测量龙门铣床y、z轴平面内4条直线的定位误差,辨识出5项关键几何误差;基于龙门铣床的数控系统和建立的误差模型,通过修改加工代码的方法对几何误差进行了补偿。结果表明:龙门铣床关键点的y、z向加工误差分别减小了66.81%和47.17%,几何误差补偿后龙门铣床的加工精度明显提高。  相似文献   

6.
提出了一种基于几何误差灵敏度的卧式数控镗床运动精度分析方法。针对典型卧式镗床进行几何误差溯源分析,确定影响机床X,Y,Z轴运动精度的21项几何误差,基于多体系统运动学理论,考虑机床各典型体间误差耦合作用机制,建立机床的空间误差模型。借助激光干涉仪对某大型卧式数控镗床进行几何误差检测试验,将检测结果输入九线法几何误差辨识模型,分离该机床的21项几何误差,并对各几何误差进行多项式拟合,据此分析该机床的空间误差场的分布特征,并针对各几何误差项进行灵敏度分析。结果表明:X,Y轴关键误差因素为位移误差,Z轴关键误差因素为直线度误差。通过对各关键因素进行精度补偿,实现该机床空间误差场分布的优化分析。对比分析表明,补偿后的空间误差场在各线性轴分布趋于均匀,最大误差从0.056 4 mm减小为0.027 8 mm,机床的空间运动精度得到明显提高。该分析方法可为此类型机床运动精度分析及空间误差补偿提供理论依据。  相似文献   

7.
基于铣削加工特点,建立铣削加工过程中的力-位综合误差模型,并基于原点偏移法建立了力-位综合误差在线补偿系统。根据铣削过程中的剪切和犁切机制,建立刀具微元切削力模型,通过积分得到切削力模型。依据变形理论,提出刀具及工件的切削力所致误差模型,并结合机床几何误差模型,利用齐次坐标变换,建立力-位综合误差模型。基于Fanuc数控系统的原点偏置功能开发误差在线补偿系统,实现力-位综合误差的在线补偿。利用立式加工中心对工件进行铣削加工实验,并对无误差补偿、仅补偿机床几何误差、仅补偿切削力所致变形误差、补偿力-位综合误差四种加工方式的加工精度进行对比,结果表明,力-位综合误差补偿的加工精度大大优于各单项误差补偿及无补偿的加工精度。  相似文献   

8.
影响加工形位误差的因素众多,机床几何误差是其中最关键的因素。其影响零件的功能要求、配合性质和自由装配性,是评估机床加工精度的重要指标。本文通过构建机床几何误差和零件形位误差之间的映射关系对加工形位误差预测方法进行研究,建立了基于机床几何误差模型的三轴机床刀具位姿误差模型,并以刀具位姿误差为中间量建立了平面度误差和圆柱度误差预测模型。使用TH6920型镗铣床进行试验验证,与零件形位误差检测值对比,圆柱度预测误差为9.3%,平面度预测误差为4.8%,预测效果较好,验证了预测方法的有效性。  相似文献   

9.
半闭环三轴机床静态解耦轮廓控制及螺距误差补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高半闭环三轴机床加工精度,首先提出单伺服轴的螺距误差补偿方法;在建立半闭环三轴机床解耦轮廓系统模型基础上,研究了静态解耦轮廓控制器的设计,并在所提出的静态解耦轮廓控制系统上实现了螺距误差补偿.实验结果表明,算法有效地实现了轮廓的切线、法线和副法线方向的解耦跟踪控制.加入螺距补偿后,机床加工半球的最大圆度误差由55μm缩小到12μm.  相似文献   

10.
为了减小由于进给系统动态特性造成的多轴联动加工轮廓误差,提出了一种基于轮廓误差模型的三轴联动加工轨迹预补偿方法。首先建立了关于轨迹曲率、加工速率及进给系统动态特性参数的轮廓误差模型;然后根据读取的插补数据,利用轮廓误差模型实时预测三轴联动加工过程中的轮廓误差补偿向量并对加工轨迹指令进行补偿;最后通过对圆、变曲率和螺旋线轨迹的MATLAB仿真和机床加工实验,证明该补偿方法将轮廓误差减小了85%以上,可显著提高数控机床加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号