首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil‐in‐water (O/W) emulsions with varying concentration of oil phase, medium‐chain triglyceride (MCT), were prepared using phase‐separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase‐separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP‐rich phase and a lower GA‐rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP‐rich phase, then to the GA‐rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase‐separated emulsions were discussed.  相似文献   

2.
We report on the effect of high-methoxy pectin on the stability and rheological properties of fine sunflower oil-in-water emulsions prepared with αs1-casein, β-casein or sodium caseinate. The aqueous phase was buffered at pH 7.0 or 5.5 and the ionic strength was adjusted with sodium chloride in the range 0.01–0.2 M. Average emulsion droplet sizes were found to be slightly larger at the lower pH and/or with pectin present during emulsification. Analysis of the serum phase after centrifugation indicated that some pectin becomes incorporated into the interfacial layer at pH 5.5 but not at pH 7.0. This was also supported by electrophoretic mobility measurements on protein-coated emulsion droplets and surface shear viscometry of adsorbed layers at the planar oil–water interface. A low pectin concentration (0.1 wt%) was found to give rapid serum separation of moderately dilute emulsions (11 vol% oil, 0.6 wt% protein) and highly pseudoplastic rheological behaviour of concentrated emulsions (40 vol% oil, 2 wt% protein). We attribute this to reversible depletion flocculation of protein-coated droplets by non-adsorbed pectin. At ionic strength below 0.1 M, the initial average droplet sizes, the creaming behaviour, and the rheology were found to be similar for emulsions made with either of the individual caseins (αs1 and β) or with sodium caseinate. At higher ionic strength, however, whereas emulsions containing β-casein or sodium caseinate were stable, the corresponding αs1-casein emulsions exhibited irreversible salt-induced flocculation which was not inhibited by the presence of the pectin.  相似文献   

3.
The enzymatic crosslinking of polymer layers adsorbed at the interface of oil-in-water emulsions was investigated. A sequential two step process, based on the electrostatic deposition of pectin onto a fish gelatin interfacial membrane was used to prepare emulsions containing oil droplets stabilized by fish gelatin-beet pectin membranes (citrate buffer, 10 mM, pH 3.5). First, a fine dispersed primary emulsion (5% soybean oil (w/v), 1% (w/w) gelatin solution) (citrate buffer, 10 mM, pH 3.5) was produced using a high pressure homogenizer. Second, a series of secondary emulsions were formed by diluting the primary emulsion into pectin solutions (0 - 0.4% (w/w)) to coat the droplets. Oil droplets of stable emulsions with different oil droplet concentrations (0.1%, 0.5%, 1.0% (w/v)) were subjected to enzymatic crosslinking. Laccase was added to the fish gelatin-beet pectin emulsions and emulsions were incubated for 15 min at room temperature. The pH- and storage stability of primary, secondary and secondary, laccase-treated emulsions was determined. Results indicated that crosslinking occurred exclusively in the layers and not between droplets, since no aggregates were formed. Droplet size increased from 350 to 400 nm regardless of oil droplet concentrations within a matter of minutes after addition of laccase suggesting formation of covalent bonds between pectin adsorbed at interfaces and pectin in the aqueous phase in the vicinity of droplets. During storage, size of enzymatically treated emulsions decreased, which was found to be due to enzymatic hydrolysis. Results suggest that biopolymer-crosslinking enzymes could be used to enhance stability of multilayered emulsions.  相似文献   

4.
研究明胶与甜菜果胶形成的复合物受pH值和混合比例的影响。甜菜果胶与明胶总质量浓度为0.1 g/100 mL时,在两者一定的混合比例下,添加葡萄糖酸内酯进行酸化,利用紫外-可见分光光度计、激光纳米粒度及电位滴定分析仪,测定体系的浊度、散射光强和流体力学半径。通过寻找特征pH值,确定相边界,进而构建体系的pH值-混合比率相图。结果表明:明胶与甜菜果胶混合物在酸化过程中,在高pH值区域无相互作用,随后形成分子内可溶性复合物,进一步酸化形成分子间可溶性复合物,在低pH值区域为不可溶性复合物,体系逐渐失稳。  相似文献   

5.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

6.
This study evaluated the stability of bilayer emulsions as a function of secondary layer composition and pH. Primary emulsions were formulated with 5% soybean oil, 1% protein from nonfat dry milk (NDM) powder as emulsifier and ι-carrageenan (ι-carr), low-methoxyl pectin (LMp), high-methoxyl pectin (HMp), or gelatin as secondary layers. ζ-Potential values increased for each emulsion as the pH decreased, with ι-carr emulsions being consistently more negatively charged than primary emulsions and significantly more stable. ζ-Potential values were not always correlated to emulsion stability. Gelatin secondary emulsions at pH 3 and HMp secondary emulsions at pH 7 were unstable due to the presence of depletion flocculation. In addition, LMp secondary emulsions stability at pH 7 might be due to calcium bridging, which increased the emulsion's viscosity. Overall, the stability of NDM emulsions was improved when ι-carr and LMp were used as secondary layers at pH 7 and 5, and when ι-carr and HMp were used as secondary layers at pH 3. Increased stability of these systems can be attributed to a second homogenization step used to formulate the secondary emulsions and to the presence of Ca(+2) in the NDM. Results from this research show that the stability of bilayer emulsions is driven by the presence of depletion flocculation, droplet charge, droplet size and distribution and viscosity. PRACTICAL APPLICATION: The use of everyday ingredients (nonfat dry milk powder, gelatin, pectin, and carrageenan), which are understood and accepted by the average consumer, creates label-friendly products that are the wave of the future. Stable emulsions can be formed using these ingredients at various pH. Understanding the stability and how the pH impacts the physicochemical characteristics and stability of these emulsions will enable manufactures to use ordinary ingredients to create healthier products (for example, low-fat dressings, sauces, dips, and beverages).  相似文献   

7.
为制备较为稳定的椰子油乳液,将酪蛋白酸钠(Sodium caseinate,SC)和黄原胶(Xanthan gum,XG)复合作为乳化剂,椰子油为油相,采用超声方法制备椰子油乳液。以平均粒径、Zeta-电位、离心稳定性及浊度等为考察指标,通过单因素实验筛选出超声功率、超声时间、油相质量分数和水相pH的合理研究范围。以平均粒径为响应值,用Box-Behnken响应面法对超声功率、超声时间和水相pH做进一步优化实验并对制备的乳液进行稳定性实验。结果表明,最佳制备工艺参数为:超声功率为480 W,超声时间为18 min,水相pH为7,所得椰子油纳米乳液的平均粒径为304.5±13.2 nm。所制备的椰子油纳米乳液在热处理温度40~90℃,pH6~8,离子浓度0~0.5 mol/L条件下具有良好的稳定性,且经3次冻融循环后乳液保持稳定,为构建用于食品加工的高稳定性椰子油乳液提供了理论支持。  相似文献   

8.
Oil droplets were produced in a pectin solution by microchannel emulsification and by conventional homogenization, and the rheological properties of the oil-in-pectin solution emulsion were investigated. The effect of the pectin concentration on the emulsification ability was studied using a dead-end-type microchannel plate. A monodisperse emulsion was produced when the pectin concentration was 1 wt% or lower. When the pectin concentration was 2 wt%, a polydisperse emulsion was produced due to the increase in the viscosity of the continuous phase (the pectin solution). Oil-in-pectin solution emulsions were also continuously produced using a crossflow-type microchannel plate. The viscosity of the emulsion increased as the volume fraction of oil increased. The relationship between the volume fraction of oil and the viscosity was well explained by a simple equation, which describes the viscosity of emulsions.  相似文献   

9.
The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5 mg/mL) and ferulic acid (5 and 10 mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH 7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH 5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH 3. At pH 3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH 5), larger droplet size (pH 3, 5 and 7) and higher pseudoplasticity (pH 5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase.  相似文献   

10.
A primary emulsion was prepared by homogenizing 10 wt% corn oil with 90 wt% aqueous β-lactoglobulin solution (0.5 wt% β-lg, pH 3 or 7) using a two-stage high-pressure valve homogenizer. This emulsion was mixed with aqueous pectin (citrus, 59% DE) stock solution (2 wt%, pH 3 or 7) and NaCl solution to yield secondary emulsions with 5 wt% corn oil, 0.225 wt% β-lactoglobulin, 0.2 wt% pectin and 0 or 100 mM NaCl. The final pH of the emulsions was then adjusted (3–8). Primary and secondary emulsions were ultrasonically treated (30 s, 20 kHz, 40% amplitude) to disrupt any flocculated droplets. Secondary emulsions were more stable than primary emulsions at intermediate pHs. Secondary emulsions prepared at pH 7 had smaller particle diameters (0.35 to 6 μm) than those prepared at pH 3 (0.42 to 18 μm) across the whole pH range studied, and also had smaller diameters than the primary emulsions (0.35 to 14 μm). Ultrasound treatment reduced the particle diameter of both primary and secondary emulsions and lowered the rate of creaming. The presence of NaCl screened the charges and thus the electrostatic interaction between biopolymer molecules and primary emulsion droplets. Secondary emulsions were more stable to the presence of 100 mM NaCl at low pHs (3–4) than primary emulsions. This study shows that stable emulsions can be prepared by engineering their interfacial membranes using the electrostatic interaction of natural biopolymers, especially at intermediate pHs where proteins normally fail to function.  相似文献   

11.
The influence of chitosan and gum arabic mixtures on the behaviour of o/w emulsions has been investigated at pH = 3.0. The emulsion behaviour, properties and microstructure were found to be greatly dependent on the precise gum arabic to chitosan ratio. Mixing of gum arabic with chitosan leads to the formation of coacervates of a size dependent on their ratio. Incorporation of low gum arabic to chitosan weight ratios into whey protein-coated emulsions causes depletion flocculation and gravity-induced phase separation. Increasing the polysaccharide weight ratio further, a droplet network with a rather high viscosity (at low shear stress) is generated, which prevents or even inhibits phase separation. At even higher gum arabic to chitosan ratios, the emulsion droplets were immobilised into clusters of an insoluble ternary matrix. Although the emulsion droplet charge had the same sign as that of the coacervates, clusters of oil droplets in a ternary matrix were generated. A mechanism to explain the behaviour of the whey protein-stabilised o/w emulsions is described on the basis of confocal and phase contrast microscopic observations, rheological data, zeta potential measurements, particle size analysis and visual assessment of the macroscopic phase separation events.  相似文献   

12.
Multilayer oil-in-water (M-O/W) emulsions were compared to primary oil-in-water (P-O/W) emulsions as carriers for volatile organic compounds (VOCs) under various environmental conditions (pH and salt). The M-O/W emulsion consisted of soy oil coated with β-lactoglobulin (βLG) and pectin layers. The release of VOCs with different physiochemical properties from aqueous solutions and emulsion systems was measured using static and dynamic headspace methods. The partition coefficients (K) calculated by the phase ratio variation (PRV) method, showed different volatile release profiles between the emulsion types. An increase in VOC release was found for the unstable P-O/W emulsion at pH 5, whereas M-O/W emulsions were stable at the same pH and retained the hydrophobic VOCs. Hydrophobic interactions and hydrogen bonds with the secondary dense layer of pectin may be responsible for the improved retention. Increasing pH and ionic strength acts as a VOC release trigger to detach the pectin from the interface. The release rates from initial dynamic curves support the results under equilibrium conditions. The results of this study demonstrate the capability of using M-O/W emulsions for controlled release of VOCs, as well as an alternative system to create stable emulsions with similar VOC release profiles.  相似文献   

13.
In the present work high methoxylic, low methoxylic and amidated pectins were tested for their actions in whey protein emulsions using a broad variation in the emulsion composition (content of protein, pectin, oil) and the solvent conditions (pH, ionic strength). Emulsifying activity index, long term stability and the particle size of the emulsions were determined, protein and galacturonan content of the serum were analysed after centrifugation. A strong relationship was found between emulsion stability and degree of esterification of the pectin, the influence of pectin amidation was relatively low. There were formed stable electrostatic complexes between the protein and the carboxylic groups of the pectin. They seemed to be much more important for emulsion stability than the hydrophobic or hydrogen bonds. The emulsion properties varied in dependence on the content of the single emulsion components and on the solution conditions. All pectins used stabilized the whey protein emulsions if their concentration was high enough. For any individual utilization it is necessary to choose the best suitable pectin.  相似文献   

14.
将普通粉碎豆渣进行湿法超细化处理,研究超细化豆渣作为皮克林乳液稳定剂的特性,考察颗粒浓度、油相体积分数、pH及离子强度对乳液液滴尺寸、稳定性和流变学性质的影响。研究发现,超细化提升了豆渣颗粒的悬浮稳定性,且当油相分数φ=0.6,水相中豆渣颗粒质量分数≥0.4%时,形成皮克林乳液的粒径为80~140μm,在1~30 d存放期内乳析指数未发生显著变化。水相pH=7时乳液的粒径最大,pH降低时乳液的平均粒径呈单调递减,且乳液稳定性增强。水相中NaCl浓度在100~350 mmol/L对乳液粒径无显著影响。研究还表明,超细化豆渣稳定的皮克林乳液为剪切变稀型流体,其流变学特性受颗粒添加量及水相pH的影响。此研究表明,超细化豆渣具有良好稳定O/W型皮克林乳液的能力。  相似文献   

15.
In this contribution we have determined the effect of limited enzymatic hydrolysis on the emulsifying capacity of amaranth proteins. The action of enzyme (alcalase and trypsin) and the pH of the continuous phase of the oil/water emulsion (pH 2.0, 6.3 and 8.0) were the variables analyzed. The results obtained show that amaranth protein isolates, AI, contain proteins species capable of forming and stabilizing emulsions, mainly at acidic pH (2.0) and to a lesser extent at pH 8.0. While the emulsions obtained are sensitive to creaming and flocculation, they do not undergo destabilization by coalescence. The emulsions prepared from proteins subjected to low grade trypsin hydrolysis (TH2.2) are sensitive to creaming - flocculation, whereas alcalase-hydrolyzed proteins (AH1.7 and AH9.5) exhibited a significant destabilization by creaming, flocculation and coalescence, mainly at pH 6.3. The effect of the pH of the aqueous phase was determining on the emulsion stability beside the structural and physicochemical characteristics of protein species utilized as tensioactive. At acidic pH (pH 2.0) the unfolding and charge of polypeptides and the capacity of form a viscoelastic film at the interface were essential while at alkaline pH (pH 8.0) the balance among high and low molecular mass protein species and flexibility of the molecule fixed the emulsions properties.  相似文献   

16.
ABSTRACT:  Phase separation behavior of egg white-pectin/guar gum mixtures was investigated. These systems led to phase separation arisen by either depletion flocculation or thermodynamic incompatibility. The influence of polysaccharides on the emulsifying activity index (EAI), emulsifying stability index (ESI), creaming stability, microstructure, and rheological properties was also studied at different polysaccharide concentrations (0% to 0.5%, [w/v]). Increasing pectin and guar gum concentration from 0.01% to 0.5% significantly improved EAI by 51% and 25%, respectively. The highest ESI and EAI values were obtained in the presence of 0.5% (w/v) pectin/guar gum. Microscopic images showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides. The addition of polysaccharides improved emulsion stability against creaming. Egg white-stabilized emulsions with and without polysaccharides reflect the pseudoplastic behavior with  n  < 1.0. Polysaccharides, especially at high concentrations, affected the viscoelastic behavior of the emulsions; storage ( G ') and loss modulus ( G ") crossed-over at lower frequency values as compared to that of emulsions containing no polysaccharide.  相似文献   

17.
The stability of whey protein stabilised emulsions, containing methylcellulose added after emulsification in their bulk phase, was investigated. The phase diagram of the ternary system whey proteins/methylcellulose/water was first established and used to identify the conditions permitting polymer phase separation within the emulsion bulk phase. Emulsions containing a whey protein and methylcellulose concentration in the bulk phase below and above the phase separation threshold could therefore be prepared. Below the phase separation threshold, the creaming rate of the oil droplets was faster than the one predicted by the Stokes equation, due to methylcellulose-induced depletion flocculation. Above the phase separation threshold, the destabilisation of the emulsion involved different mechanisms, depending on the emulsifier adsorbed at the O/W interface. In the case of Tween 40 stabilised droplets, depletion flocculation led to a complete creaming of the fat globules while phase separation led to the formation of two polymer-rich phases, namely a protein-rich phase at the bottom of the tube and a methylcellulose-rich phase above. In the case of whey protein stabilised droplets, phase separation between bulk whey proteins and methylcellulose occurred, and the fat globules were entrapped in the protein-rich phase. These results permitted to describe the destabilisation mechanisms of both Tween 40 and whey protein stabilised emulsions in the presence of unadsorbed polysaccharide. They could be used to better understand the destabilisation processes arising in food emulsions, especially in those emulsions containing whey proteins, small surfactant molecules and polysaccharides.  相似文献   

18.
In this study, development of pea (Pisum sativum) protein stabilised dry and reconstituted emulsions is presented. Dry emulsions were prepared by spray-drying liquid emulsions in a laboratory spray-dryer. The effect of drying on the physical stability of oil-in-water emulsions containing pea protein-coated and pea protein/pectin-coated oil droplets has been studied. Oil-in-water emulsions (5 wt.% Miglyol 812 N, 0.25 wt.% pea protein, 11% maltodextrin, pH 2.4) were prepared that contained 0 (primary emulsion) or 0.2 wt.% pectin (secondary emulsion). The emulsions were then subjected to spray-drying and reconstitution (pH 2.4). The stability of the emulsions to dry processing was then analysed using oil droplet size, microstructure, Zeta potential, and creaming measurements. Obtained results showed that the secondary emulsions had better stability to droplet aggregation after drying than primary emulsions. To interpret these results, we propound that pectin, an anionic polysaccharide, formed a less charged protective layer around the protein interfacial film surrounding the oil droplets that improved their stability to spray-drying mainly by increasing steric effects.  相似文献   

19.
时浩  郑为完  杨静  龙吉云  廖和菁 《食品科学》2009,30(18):225-229
采用透射光浊度法研究食品油脂乳状液的粒径大小、分布与其稳定性的关系,并且与激光粒度仪法、离心分析法等方法进行比较分析。结果表明:透射光浊度法与激光粒度仪法测定结果基本一致,可见,透射光浊度法是一种简便、可靠的预测乳状液稳定性的方法。  相似文献   

20.
The effects of pectin and guar gum on rheology, microstructure and creaming stability of 1% (w/v) egg yolk granule stabilized emulsions were investigated. While the addition of low amount of pectin (0.1% (w/v)) had no effect on the emulsion viscosity, the addition of 0.5% (w/v) pectin greatly increased the viscosity. Granule-stabilized emulsion without hydrocolloids reflects the pseudoplastic behavior (shear-thinning behavior with flow behavior index, n < 1.0). Hydrocolloids, especially at high concentrations, affected the viscoelastic behavior of the emulsions and both storage (G′) and loss modulus (G′′) were regarded as frequency dependent. Emulsions behaved like a liquid with G′′ > G′ at lower frequencies, and like an elastic solid with G′ > G′′ at higher frequencies. Emulsion microstructure indicated that the presence of hydrocolloids induced flocculation. Creaming stability of emulsions was enhanced by the presence of hydrocolloids and increasing hydrocolloid concentration decreased the creaming by restricting the movement of oil droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号