首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的 高光谱图像具有高维度的光谱结构,而且邻近波段之间往往存在大量冗余信息,导致在随机样本选择策略和图像分类过程中出现选择波段算法复杂度较高和不适合小样本的现象。针对该问题,在集成学习算法的基础上,考虑不同波段在高光谱图像分类过程中的作用不同,提出一种融合累积变异比和超限学习机的高光谱图像分类算法。方法 定义波段的累积变异比函数来确定各波段在分类算法的贡献程度。基于累积变异比函数剔除低效波段,并结合空谱特征进行平均分组加权随机选择策略进行数据降维。为了进一步提高算法的泛化能力,对降维后提取的空谱特征进行多次样本重采样,训练得到多个超限学习机弱分类器,再将多个弱分类器的结果通过投票表决法得到最后的分类结果。结果 实验使用Indian Pines、Pavia University scene和Salinas这3种典型的高光谱图像作为实验标准数据集,采用支持向量机(support vector machine,SVM),超限学习机(extreme learning machine,ELM),基于二进制多层Gabor超限学习机(ELM with Gabor,GELM),核函数超限学习机(ELM with kernel,KELM),GELM-CK(GELM with composite kernel),KELM-CK(KELM with composite kernel)和SS-EELM(spatial-spectral and ensemble ELM)为标准检测算法验证本文算法的有效性,在样本比例较小的实验中,本文算法的总体分类精度在3种数据集中分别为98.0%、98.9%和97.9%,比其他算法平均分别高出9.6%和4.7%和4.1%。本文算法耗时在3种数据集中分别为15.2 s、60.4 s和169.4 s。在同类目标空谱特性差异较大的情况下,相比于分类精度较高的KELM-CK和SS-EELM算法减少了算法耗时,提高了总体分类精度;在同类目标空谱特性相近的情况下,相比于其他算法,样本数量的增加对本文算法的耗时影响较小。结论 本文算法通过波段的累积变异比函数优化了平均分组波段选择策略,针对各类地物目标分布较广泛并且同类目标空谱特性差异较大的高光谱数据集,能够有效提取特征光谱维度的差异性,确定参数较少,总体分类效果较好。  相似文献   

2.
目的 在高光谱图像分类中,由于成像空间分辨率较低,混合像元大量存在。混合像元使得不同类别的光谱特征发生改变,失去原有的独特性,类内差异变大,类间差异变小。针对这一问题,本文提出基于分组滚动引导滤波的策略。同时针对高光谱图像中存在的“维数灾难”问题,提出了弹性网逻辑回归分类器的框架。方法 通过线性判别分析(linear discriminant analysis,LDA)算法生成具有判别性的引导图,对高光谱图像的每个波段执行滚动引导,从而让光谱曲线呈现类内凝聚、类间距离增大的趋势。通过构造逻辑回归目标函数的L1&L2范数正则项约束进行嵌入式波段选择,为每个类别选择出各自可分性强的波段,同时可以使高度相关性的波段保留下来作为分类依据。最后使用邻域优化策略对分类后结果进一步优化,提升分类精度。结果 分别在3个实验数据集上与其他分类算法进行对比,实验结果表明,本文算法的分类结果取得明显提升。本文算法的总体分类精度(overall accuracy,OA)在Indian Pines、Salinas和KSC (Kennedy Space Center)数据集上分别为96.61%、98.66%和99.04%,比其他算法平均分别高出4.8%、3%和1%,同时也在Indina Pines数据集中进行了对比实验以验证增强混合像元光谱可分性和波段可分性算法的有效性,对比实验结果表明本文算法改善了分类效果。结论 分别在光谱特性和波段选择两个环节增强类可分性,分类精度取得明显提升;同时,本文算法适合不同的数据集,并且在不同数量的训练样本下OA均表现较优,算法具有一定的鲁棒性。  相似文献   

3.
目的 高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法 首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果 为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%, K-means算法的总精度分别为83.39%和67.06%,较K-means算法增长8.81%和15.9%。结论 提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。  相似文献   

4.
目的 遥感图像融合是将一幅高空间分辨率的全色图像和对应场景的低空间分辨率的多光谱图像,融合成一幅在光谱和空间两方面都具有高分辨率的多光谱图像。为了使融合结果在保持较高空间分辨率的同时减轻光谱失真现象,提出了自适应的权重注入机制,并针对上采样图像降质使先验信息变得不精确的问题,提出了通道梯度约束和光谱关系校正约束。方法 使用变分法处理遥感图像融合问题。考虑传感器的物理特性,使用自适应的权重注入机制向多光谱图像各波段注入不同的空间信息,以处理多光谱图像波段间的差异,避免向多光谱图像中注入过多的空间信息导致光谱失真。考虑到上采样的图像是降质的,采用局部光谱一致性约束和通道梯度约束作为先验信息的约束,基于图像退化模型,使用光谱关系校正约束更精确地保持融合结果的波段间关系。结果 在Geoeye和Pleiades卫星数据上同6种表现优异的算法进行对比实验,本文提出的模型在2个卫星数据上除了相关系数CC(correlation coefficient)和光谱角映射SAM(spectral angle mapper)评价指标表现不够稳定,偶尔为次优值外,在相对全局误差ERGAS(erreur relative globale adimensionnelle de synthèse)、峰值信噪比PSNR(peak signal-to-noise ratio)、相对平均光谱误差RASE(relative average spectral error)、均方根误差RMSE(root mean squared error)、光谱信息散度SID(spectral information divergence)等评价指标上均为最优值。结论 本文模型与对比算法相比,在空间分辨率提升和光谱保持方面都取得了良好效果。  相似文献   

5.
目的 高光谱分类问题中,由于类内光谱特性存在差异性,导致常规的随机样本选择策略无法保证训练样本均匀覆盖样本空间。针对这一问题,提出基于类内再聚类的样本空间优化策略。同时为了进一步提高分类精度,针对低置信度分类结果,提出基于邻域高置信信息的修正策略。方法 采用FCM(fuzzy C-means)聚类算法对每类样本进行类内再聚类,在所聚的每个子类内选择适当样本。利用两个简单分类器SVM(support vector machine)和SRC(sparse representation-based classifier),对分类结果进行一致性检测,确定高、低置信区域,对低置信区域,利用主成分图作为引导图对置信度图进行滤波,使得高置信信息向低置信区域传播,从而修正低置信区域分类结果。以上策略可以保证即便在较少的训练样本的情况下,也能够训练出较高的分类器,大幅度提高分类精度。结果 使用3组实验数据,根据样本比例设置两组实验与经典以及最新分类算法进行对比。实验结果表明,本文算法均取得很大改进,尤其在样本比例较小的实验中效果显著。在小比例(一般样本选取比例的十分之一)训练样本实验中,对于India Pines数据集,OA(overall accuracy)值高达90.48%;在Salinas数据集上能达到99.68%;同样,PaviaU数据集的OA值为98.54%。3组数据集的OA值均比其他算法高出4% 6%。结论 综上表明,本文算法通过样本空间优化策略选取有代表性、均衡性的样本,保证小比例样本下分类精度依然显著;基于邻域高置信信息的修正策略起到很好的优化效果。同时,本文算法适应多种数据集,具有很好的鲁棒性。  相似文献   

6.
目的 场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法 HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1 385幅图像,且空间分辨率较高(1 m),波长范围广(380~1 050 nm),同时蕴含地物丰富的空间和光谱信息。结果 为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论 HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。  相似文献   

7.
目的 针对当前空谱融合方法应用到高光谱图像融合时,出现的空间细节信息提升明显但光谱失真,或者光谱保真度高但空间细节信息提升不足的问题,本文提出一种波段自适应细节注入的高分五号(GF-5)高光谱图像(30 m)与Sentinel-2多光谱图像(10 m)的遥感影像空谱融合方法。方法 首先,为了解决两个多波段图像不便于直接融合的问题,提出一种波段自适应的融合策略,对多光谱图像波谱范围以外的高光谱图像波段,以相关系数为标准将待融合图像进行分组。其次,针对传统Gram-Schmidt (GS)融合方法用平均权重系数模拟低分辨率图像造成的光谱失真问题,使用最小均方误差估计计算线性拟合系数,再将拟合图像作为第1分量进行GS正变换,提升融合图像的光谱保真度。最后,为了能同时注入更多的空间细节信息,通过非下采样轮廓波变换将拟合图像、空间细节信息图像和多光谱图像的空间、光谱信息融入到重构的高空间分辨率图像中,再将其与其他GS分量一起进行逆变换,最终得到10 m分辨率的GF-5融合图像。结果 通过与当前用于高光谱图像空谱融合的典型方法比较,本文方法对于受时相影响较小的城镇区域,在提升空间分辨率的同时有较好的光谱保真度,且不会出现噪点;对于受时相变化影响大的植被密集区域,本文方法融合图像有较好的清晰度和地物细节信息,且没有噪点出现。本文方法的CC (correlation coefficient)、ERGAS (erreur relative globale adimensionnelle de synthèse)和SAM (spectral angle mapper)相比于传统GS方法分别提升8%、26%和28%,表明本文方法的光谱保真度大大提高。结论 本文方法的结果空间上没有噪点且光谱曲线与原始光谱曲线基本保持一致,是一种兼具高空间分辨率和高光谱保真度的高光谱图像融合方法。  相似文献   

8.
目的 高光谱分类任务中,由于波段数量较多,图像中存在包含噪声以及各类地物样本分布不均匀等问题,导致分类精度与训练效率不能平衡,在小样本上分类精度低。因此,提出一种基于级联多分类器的高光谱图像分类方法。方法 首先采用主成分分析方法将高度相关的高维特征合成无关的低维特征,以加快Gabor滤波器提取纹理特征的速度;然后使用Gabor滤波器提取图像在各个尺寸、方向上的纹理信息,每一个滤波器会生成一张特征图,在特征图中以待分类样本为中心取一个d×d的邻域,计算该邻域内数据的均值和方差来作为待分类样本的空间信息,再将空间信息和光谱信息融合,以降低光线与噪声的影响;最后将谱—空联合特征输入级联多分类器中,得到预测样本关于类别的概率分布的平均值。结果 实验采用Indian Pines、Pavia University和Salinas 3个数据集,与经典算法如支持向量机和卷积神经网络进行比较,并利用总体分类精度、平均分类精度和Kappa系数作为评价标准进行分析。本文方法总体分类精度在3个数据集上分别达到97.24%、99.57%和99.46%,相对于基于径向基神经网络(RBF)核函数的支持向量机方法提高了13.2%、4.8%和5.68%,相对于加入谱—空联合特征的RBF-SVM (radial basis function-support vector machine)方法提高了2.18%、0.36%和0.83%,相对于卷积神经网络方法提高了3.27%、3.2%和0.3%;Kappa系数分别是0.968 6、0.994 3和0.995 6,亦有提高。结论 实验结果表明,本文方法应用于高光谱图像分类具有较优的分类效果,训练效率较高,无需依赖GPU,而且在小样本上也具有较高的分类精度。  相似文献   

9.
目的 为提高目标跟踪的鲁棒性,针对相关滤波跟踪中的多特征融合问题,提出了一种多特征分层融合的相关滤波鲁棒跟踪算法。方法 采用多通道相关滤波跟踪算法进行目标跟踪时,从目标和周围背景区域分别提取HOG(histogram of oriented gradient)、CN(color names)和颜色直方图3种特征。提出的分层融合算法首先采用自适应加权融合策略进行HOG和CN特征的特征响应图融合,通过计算特征响应图的平滑约束性和峰值旁瓣比两个指标得到融合权重。将该层融合结果与基于颜色直方图特征获得的特征响应图进行第2层融合时,采用固定系数融合策略进行特征响应图的融合。最后基于融合后的响应图估计目标的位置,并采用尺度估计算法估计得到目标更准确的包围盒。结果 采用OTB-2013(object tracking benchmark 2013)和VOT-2014(visual object tracking 2014)公开测试集验证所提跟踪算法的性能,在对多特征分层融合参数进行分析的基础上,与5种主流基于相关滤波的目标跟踪算法进行了对比分析。实验结果表明,本文算法的目标跟踪精度有所提高,其跟踪精度典型值比Staple算法提高了5.9%(0.840 vs 0.781),同时由于有效地融合了3种特征,在多种场景下目标跟踪的鲁棒性优于其他算法。结论 提出的多特征分层融合跟踪算法在保证跟踪准确率的前提下,跟踪鲁棒性优于其他算法。当相关滤波跟踪算法采用了多个不同类型特征时,本文提出的分层融合策略具有一定的借鉴性。  相似文献   

10.
目的 高光谱影像(hyperspectral image,HSI)中“同物异谱,异物同谱”的现象普遍存在,使分类结果存在严重的椒盐噪声问题。HSI中的空间地物结构复杂多样,单一尺度的空间特征提取方法无法有效地表达地物类间差异和区分地物边界。有效解决光谱混淆和空间尺度问题是提高分类精度的关键。方法 结合多尺度超像素和奇异谱分析,提出一种新的高光谱影像分类方法,从而充分挖掘地物的局部空间特征和光谱特征,解决空间尺度和光谱混淆的问题,提高分类精度。利用多尺度超像素对影像进行分割,获取不同尺度的分割影像,同时在分割区域内进行均值滤波,减少类内的光谱差异,增强类间的光谱差异;对每个区域计算平均光谱向量,并利用奇异谱分析方法获取光谱的主要鉴别特征,同时消除噪声的影响;利用支持向量机对不同尺度超像素分割影像进行分类,并进行决策融合,得到最终的分类结果。结果 实验选取了两个标准高光谱数据集和一个真实数据集,结果表明,利用本文算法提取的光谱—空间特征进行分类,比直接在原始数据上进行分类分别提高约26.8%、9.2%和13%的精度;与先进的深度学习SSRN (spectral-spatial residual network)算法相比,本文算法在精度上分别提升约5.2%、0.7%和4%,并且运行时间仅为前者的18.3%、45.4%和62.1%,处理效率更高。此外,在训练样本有限的情况下,两个标准数据集的样本分别为1%和0.2%时,本文算法均能取得87%以上的分类精度。结论 针对高光谱影像分类中的难题,提出一种新的融合光谱和多尺度空间特征的HSI分类方法。实验结果表明,本文方法优于对比方法,可以产生更精细的分类结果。  相似文献   

11.
针对由于空间信息利用不充分而导致的高光谱图像分类精度较低的问题,提出一种基于图正则自适应联合协同表示的高光谱图像分类算法.首先,采用双边滤波操作对高光谱图像进行空间信息提取,以充分挖掘每个像素的空间信息;其次,在联合协同表示的目标函数中引入图正则约束项,以保持高光谱数据的流形结构;再次,一方面利用图像分割来自适应调整空间邻域的形状,另一方面通过对中心像素的空间近邻赋予不同的权重,提出一种自适应空间-光谱特征融合策略;最后,基于误差最小原则,给出测试样本的类别标签.在两个高光谱数据集上的实验结果表明,所提出算法的整体分类精度分别达到98.50%和97.30%.  相似文献   

12.
高光谱图像具有高维度、带间相关性较高、样本数量较少等诸多问题,直接利用表示学习算法对高光谱图像进行分类会导致严重的维数灾难.对于高光谱图像,不是所有的光谱带都可用于特定的分类任务.因此,文中提出基于增强空谱特征网络的空间感知协同表示算法.依据高光谱图像内在的低维流形构建基于空谱特征的分层网络.利用训练的网络对高维数据进...  相似文献   

13.
针对高光谱遥感图像中标记样本获取困难的问题,研究如何选择少量高质量的查询样本进行交互标记的多视图主动学习算法。首先采用不同尺度和方向的三维Gabor滤波器组提取高光谱图像空谱特征;然后挑选出类别判别能力较强的三维Gabor特征来构建多视图;最后提出一种基于多视图后验概率差异最小(MPPD)的样本查询策略。实验初选30个标记样本,经过100次迭代后,三维Gabor特征多视图结合MPPD查询策略在ROSIS Pavia University和AVIRIS Indiana Pines两个数据集上的总体分类精度分别达到94.16%和91.30%,表明通过三维Gabor可以有效提取高光谱遥感图像空谱特征,提供具有多样性和互补性的特征视图。结合MPPD查询策略能挑选出最有价值的查询样本。  相似文献   

14.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

15.
目的 高光谱图像分类是遥感领域的基础问题,高光谱图像同时包含丰富的光谱信息和空间信息,传统模型难以充分利用两种信息之间的关联性,而以卷积神经网络为主的有监督深度学习模型需要大量标注数据,但标注数据难度大且成本高。针对现有模型的不足,本文提出了一种无监督范式下的高光谱图像空谱融合方法,建立了3D卷积自编码器(3D convolutional auto-encoder,3D-CAE)高光谱图像分类模型。方法 3D卷积自编码器由编码器、解码器和分类器构成。将高光谱数据预处理后,输入到编码器中进行无监督特征提取,得到一组特征图。编码器的网络结构为3个卷积块构成的3D卷积神经网络,卷积块中加入批归一化技术防止过拟合。解码器为逆向的编码器,将提取到的特征图重构为原始数据,用均方误差函数作为损失函数判断重构误差并使用Adam算法进行参数优化。分类器由3层全连接层组成,用于判别编码器提取到的特征。以3D-CNN (three dimensional convolutional neural network)为自编码器的主干网络可以充分利用高光谱图像的空间信息和光谱信息,做到空谱融合。以端到端的方式对模型进行训练可以省去复杂的特征工程和数据预处理,模型的鲁棒性和稳定性更强。结果 在Indian Pines、Salinas、Pavia University和Botswana等4个数据集上与7种传统单特征方法及深度学习方法进行了比较,本文方法均取得最优结果,总体分类精度分别为0.948 7、0.986 6、0.986 2和0.964 9。对比实验结果表明了空谱融合和无监督学习对于高光谱遥感图像分类的有效性。结论 本文模型充分利用了高光谱图像的光谱特征和空间特征,可以做到无监督特征提取,无需大量标注数据的同时分类精度高,是一种有效的高光谱图像分类方法。  相似文献   

16.
针对高光谱图像存在“维数灾难”的问题,提出一种全局判别与局部稀疏保持的高光谱图像半监督特征提取算法(GLSSFE)。该算法通过LDA算法的散度矩阵保存有类标样本的全局类内判别信息和全局类间判别信息,结合利用半监督PCA算法对有类标和无类标样本进行主成分分析,保存样本的全局结构;利用稀疏表示优化模型自适应揭示样本数据间的非线性结构,将局部类间判别权值和局部类内判别权值嵌入半监督LPP算法保留样本数据的局部结构,从而最大化同类样本的相似性和异类样本的差异性。通过1-NN和SVM两个分类器分别对Indian Pines和Pavia University两个公共高光谱图像数据集进行分类,验证所提特征提取方法的有效性。实验结果表明,该GLSSFE算法最高总体分类精度分别达到89.10%和92.09%,优于现有的特征提取算法,能有效地挖掘高光谱图像的全局特征和局部特征,极大地提升高光谱图像的地物分类效果。  相似文献   

17.
The presence of irrelevant and highly correlated spectral bands significantly reduces the classification accuracy of the hyperspectral images. Therefore, the selection of suitable bands from the set of available spectral bands plays a crucial role in improving the classification accuracy. In this paper, a novel band selection approach is proposed based on nature inspired meta-heuristic algorithm to mitigate the effect of curse of dimensionality. Wind-driven optimization (WDO), among other meta-heuristic algorithms, has proven to be more efficient in solving global optimization problems. However, WDO is prone to premature convergence when solving the global optimization problem due to loss of diversity of air particles. Therefore, a modified WDO (MWDO) is proposed for band selection, which is able to avoid the premature convergence and control the exploration–exploitation search trade-off. Finally, in order to further improve the performance of the classification, the selected bands are fed into the deep learning architecture to extract the high-level useful features. The experiments are carried on three widely used standard datasets such as Indian Pines, Pavia University, and Salinas. The experimental results show that the proposed approach selects an optimal subset of bands with good convergence characteristics and provide high classification accuracy with fewer bands in comparison with other approaches. The proposed method achieves an overall accuracy of 93.26%, 94.76%, and 95.96% for Indian Pines, Pavia University, and Salinas datasets, respectively.  相似文献   

18.
张永鹏  张春梅  白静 《图学学报》2020,41(6):897-904
摘 要:针对高光谱图像标记样本量少,提取特征不充分以及提取到的特征不区分贡献度 的问题,提出一个新型的 DenseNet-Attention 网络模型(DANet)。首先,该模型利用三维卷积核 同步提取联合光谱空间特征,同时密集连接网络(DenseNet)的稠密连接块除了能够充分提取更 加鲁棒的特征外,还减少了大量参数;其次,自注意力(self-attention)机制作为一个模块加入到 稠密连接块中,可以使上层提取到的特征在进入下一层网络之前,经过该模块对其进行权重分 配,使具有丰富的物类别信息的特征得到加强,进而区分特征的贡献度。网络模型以原始高光 谱图像邻域块作为输入,无需任何预处理,是一个端对端学习的深度神经网络。在印第安松树 林和帕维亚大学数据集上进行对比试验,网络模型的分类精度分别能够达到 99.43%和 99.99%, 有效提高了高光谱图像分类精度。  相似文献   

19.
针对高光谱图像存在维数“灾难”、特征以及空间信息利用不足的问题,结合深度学习、流形学习及多尺度空间特征的最新进展,提出了一种TSNE和多尺度稀疏自编码网络的高光谱图像分类算法。利用TSNE算法对高光谱图像进行降维,再对每个像元的邻域进行多尺度空间特征提取,利用加入空谱联合信息的像元训练稀疏自编码网络模型并通过softmax分类器进行分类,减少计算复杂度,提高分类精确度。通过对Indian Pines及Pavia University两组数据进行实验,结果表明,提出的算法与其他五种算法相比分类效果更好。  相似文献   

20.
针对高光谱图像光谱维度高、现有网络无法提供深度级的多层次特征,从而影响分类精度和速度的问题。首先采用核主成分分析对高光谱图像进行降维,使降维后的数据具有最佳区分度,提出了一种基于混合卷积与三重注意力的卷积神经网络(hybrid convolutional neural network with triplet attention, HCTA-Net)模型,该模型设计了一种基于三维、二维和一维卷积的混合卷积神经网络,通过不同维度卷积神经网络的融合,提取高光谱图像精细的光谱–空间联合特征。在二维卷积中加入深度可分离卷积,减少了模型参数,同时引入三重注意力机制,使用三分支结构实现跨维度信息交互,抑制无用的特征信息。在Indian Pines、Salinas和Pavia University数据集上的实验结果表明,本文提出的模型优于其他对比方法,总体分类精度分别达到了99.16%、99.87%和99.76%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号