首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
High performance CMOS current comparator   总被引:1,自引:0,他引:1  
A new high-speed CMOS current comparator is described. By changing the buffer of an existing comparator from class B to class AB operation, voltage swings are reduced, resulting in greater speed for small input currents. Simulation results employing a 1.6μm CMOS technology show the response time to a 0.1μA input current to be 11ns and the power dissipation to be 1.4mW, resulting in a five times improvement in speed/power ratio over existing high-speed current comparators  相似文献   

2.
A new PIN/MISS photoreceiver with very high output current has been developed by using the combination of an amorphous silicon germanium alloy PIN photodiode and a metal-insulator-semiconductor switch (MISS) device. The developed photoreceiver uses a PIN photodiode as the light absorption structure and light wavelength selector and the MISS device as an actuator to drive an electronic load. Based on the experimental results, the photoreceiver yields a very high output current of 3.2 mA at a voltage bias of 6 V under an incident light power of Pin=100 μW, and has a rise time of 465 μs with a load resistance of R=1 kΩ. The peak response wavelength of the PIN photodiode is at 905 nm, i.e., infrared light. Thus the high output current PIN/MISS photoreceiver is a good candidate for some specific applications  相似文献   

3.
The authors report on the high-speed operation of a superconducting comparator circuit, based on coupling the quantum flux parametron (QFP) to an RF SQUID, which can be used to build a flash-type analog-to-digital converter (ADC). Simulations of this circuit show that it is expected to achieve operation with input signal bandwidths greater than 4 GHz and with a dynamic range equal to at least 4 b of resolution. A QFP-based comparator fabricated with a process using NbN/Pb-alloy Josephson junctions of 5 μm by 5 μm and a current density of 100 A/cm2 has been examined to evaluate the properties of the QFP-ADC. Analog-to-digital conversion of the comparator has been observed with a QFP activation frequency up to 18.2 GHz. By employing a sampling method, input signals with frequencies up to 5.4 GHz have also been digitized  相似文献   

4.
一种高电源效率开关电流比较器   总被引:1,自引:0,他引:1  
提出了一种基于Boonsobhak结构但电源效率更高的开关电流比较器。比较器采用主从式结构,工作模式由两相不交叠时钟控制。主比较器根据输入电流信号的极性产生微小电压差,同时将输出信号对输入信号的影响隔离开来。从比较器将主比较器产生的微小电压差进行再生放大,最终产生比较结果。提出的新比较器结构采用静态甲乙类锁存式比较器作为主比较器,以静态功耗为零的动态锁存式比较器为从比较器,使得整体比较器在保持较高速度的同时,功耗大为降低。采用CSMC0.6μmCMOS工艺设计并实现,实际测试结果显示开关电流比较器具有6.5bit分辨率,能在20MHz时钟频率下正常工作,而功耗降低了75%。  相似文献   

5.
Voo  T. Toumazou  C. 《Electronics letters》1996,32(2):105-106
A temperature stable external reference resistor is used to accurately control and tune the transconductance of an integrated current-mirror. The technique can be used to tune and optimise the bandwidth of the current-mirror for application in CMOS filters  相似文献   

6.
A Nyquist-rate pixel-level ADC for CMOS image sensors   总被引:2,自引:0,他引:2  
A multichannel bit-serial (MCBS) analog-to-digital converter (ADC) is presented. The ADC is ideally suited to pixel-level implementation in a CMOS image sensor. The ADC uses successive comparisons to output one bit at a time simultaneously from all pixels. It is implemented using a 1-bit comparator/latch pair per pixel or per group of neighboring pixels, and a digital-to-analog-converter/controller shared by all pixels. The comparator/latch pair operates at very slow speeds and can be implemented using simple robust circuits. The ADCs can be fully tested by applying electrical signals without any optics or light sources. A CMOS 320×256 sensor using the MCBS ADC is described. The chip measures 4.14×5.16 mm2. It achieves 10×10 μm2 pixel size at 28% fill factor in 0.35 μm CMOS technology. Each 2×2 pixel block shares an ADC. The pixel block circuit comprises 18 transistors. It operates in subthreshold to maximize gain and minimize power consumption. The power consumed by the sensor array is 20 mW at 30 frames/s. The measured integral nonlinearity is 2.3 LSB, and differential nonlinearity is 1.2 LSB at eight bits of resolution. The standard deviation of the gain and offset fixed pattern noise due to the ADC are 0.24 and 0.2%, respectively  相似文献   

7.
A new rail-to-rail CMOS input architecture is presented that delivers behavior nearly independent of the common-mode level in terms of both transconductance and slewing characteristics. Feedforward is used to achieve high common-mode bandwidth, and operation does not rely on analytic square law characteristics, making the technique applicable to deep submicron technologies. From the basis of a transconductor design, an asynchronous comparator and a video bandwidth op amp are also developed, providing a family of general purpose analog circuit functions which may be used in high (and low) bandwidth mixed-signal systems. Benefits for the system designer are that the need for rigorous control of common-mode levels is avoided and input signal swings right across the power supply range can be easily handled. A further benefit is that having very consistent performance, the circuits can be easily described in VHDL (or other behavioral language) to allow simulation of large mixed-signal systems. The circuits presented may be easily adapted for a range of requirements. Results are presented for representative transconductor, op amp, and comparator designs fabricated in a 0.5 μm 3.3 V digital CMOS process  相似文献   

8.
Mixed analog and digital circuits are realized on a 1.5 μm silicon-gate CMOS chip with +5 V power supply only. The circuit uses CMOS digital gate arrays of 0.32 K to 19.6 K cells and is created without any additional turnaround time or any restriction on the design. Typical internal digital gate (two-input NAND) speed, with a fanout of 3 and a wire length of 3 mm, is 1.4 ns. A voltage comparator with ±8 mV maximum input offset voltage and 60 ns response time, digital-to-analog and analog-to-digital converters with 4-, 6-, and 8-bit resolution, respectively, and an analog switch of 25 Ω on-resistance can be realized on the same chip with digital circuits. Using this technology, about one-tenth of the turnaround time can be achieved compared with full-custom LSIs for the same system. The product development flow and computer-aided-design tools for designing mixed analog and digital gate arrays are the same as for digital gate arrays  相似文献   

9.
The design of an 8-bit CMOS A/D converter is described which is intended for embedded operation in VLSI chips for video applications. The requirements on accuracy are analyzed and a comparator circuit is shown which realizes a high bandwidth. The full-flash architecture operates on wideband signals like CVBS in television systems. The A/D converter core measures 2.8 mm2 in a 1 μm CMOS process. The embedded operation of the A/D converter is illustrated on a video line-resizing chip  相似文献   

10.
For application in high-energy physics experiments, this paper describes the design of a nine-channel binary detection system featuring a fully differential 300-μW, 40-MHz comparator whose offset voltage is reduced to less than 500 μV by means of a digitally controlled calibration system. Besides the comparator, each channel also includes an input waveshaping high-pass filter for improved detection performance in the particle-radiated operating environment. To save area and power, this is realized by a passive switched-capacitor polyphase network with time-interleaved operation. Two prototype chips have been realized in a 1.2-μm CMOS technology. One chip includes nine filter-comparator channels that occupy 0.4 mm2 and at 40 MHz dissipate about 2.7 mW. The other chip contains the calibration system that generates all control signals for offset correction of the filter/comparator channels and occupies 1.4 mm2  相似文献   

11.
Design considerations for high-frequency CMOS continuous-time current-mode filters are presented. The basic building block is a differential current integrator with its gain constant set by a small-signal transconductance and a gate capacitance. A prototype fifth-order low-pass ladder filter implemented in a standard digital 2 μm n-well CMOS process achieved a -3 dB cutoff frequency (f 0) of 42 MHz; f0 was tunable from 24 to 42 MHZ by varying a reference bias current from 50 to 150 μA. Using a single 5 V power supply with a nominal reference current of 100 μA, the five-pole filter dissipated 25.5 mW. The active filter area was 0.056 mm2/pole. With the minimum input signal defined as the input-referred noise integrated over a 40 MHz bandwidth, and the maximum input signal defined at the 1% total intermodulation distortion (TIMD) level, the measured dynamic range was 69 dB. A third-order elliptic low-pass ladder filter was also integrated in the 2 μm n-well CMOS process to verify the implementation of finite transmission zeros  相似文献   

12.
A low-power, high-speed, but with a large input dynamic range and output swing class-AB output buffer circuit, which is suitable for flat-panel display application, is proposed. The circuit employs an elegant comparator to sense the transients of the input to turn on charging/discharging transistors, thus draws little current during static, but has an improved driving capability during transients. It is demonstrated in a 0.6 μm CMOS technology  相似文献   

13.
A model for the calculation of the input noise of a high impedance photoreceiver is proposed, taking into account the contributions of low-frequency characteristics of the FET. Simulations based on this approach show that excess gate leakage current and low-frequency excess noise, usually observed in InGaAs channel FET's, strongly penalize the photoreceiver sensitivity for low to medium data rates. New InGaAsP channel HFET's have been developed and fabricated to solve those problems, dc measurements on 1×100 μm2 gate HFET's show good Ids-Vds characteristics with associated gate leakage currents lower than 200 nA. Promising ft of 18 GHz and f max of 40 GHz have been recorded on 0.5×200 μm2 gate transistors. Low-frequency gate and channel noise measurements demonstrate the suitability of InGaAsP channel HFET structure and technology for low noise applications. A hybrid pin-HFET high impedance photoreceiver has been assembled with a 1×150 μm 2 gate transistor. A very close agreement is found between photoreceiver input noise predicted by our model and experimental results. Record sensitivities of 34.8 dBm at 622 Mbit/s and -28.7 dBm at 2.5 Gbit/s are inferred from noise measurements, confirming the strong potential of InGaAsP channel HFET's for the fabrication of high sensitivity photoreceivers operating at moderate data rates  相似文献   

14.
在对传统CMOS锁存比较器分析的基础上,设计了一种可自校正失调电压的BiCMOS锁存比较器,它既具有双极型电路快速、输入失调电压低和大电流驱动能力,又具备CMOS电路低功耗和高集成度的特性,因而它们特别适用于高速缓冲数字信息系统和其它便携式数字设备.  相似文献   

15.
This paper presents a technique and circuitry for high-resolution sampling of a digital waveform. Very fine sampling resolution is achieved by simultaneously propagating both data and clock signals through delay elements in such a way that resolution is controlled by the difference in the delay of clock and data signals. Delay units were designed using biased CMOS and differential CMOS inverters. A sampler circuit with 64 stages has been fabricated in 1.2 μm CMOS technology, and test results show a bandwidth of up to 1 Gb/s for the input data and a sampling resolution externally adjustable between 25 and 250 ps. The fabricated circuit has shown sampling stability, monotonicity in sampling, and uniformity in sampling resolution  相似文献   

16.
A new high speed, low power and small area CMOS current comparator based on a resistive feedback network is proposed. Simulation results employing 0.35 μm CMOS parameters demonstrate 7 ns response time and 0.45 mW power consumption for 0.1 μA input current, which represents a ~400% improvement in power-delay product over existing current comparators. In this design, the bias current and the input impedance are well controlled parameters, and the inherent autozeroing scheme does not require any offset compensation  相似文献   

17.
We have developed a low-power, high-accuracy comparator composed of a dynamic latch and a CMOS charge transfer preamplifier (CT preamplifier). The CT preamplifier amplifies the input signal with no static power dissipation, and the operation is almost insensitive to the device parameter fluctuations. The low-power and high-accuracy comparator has been realized by combining the CT preamplifier with a dynamic latch circuit. The fluctuation in the offset voltage of a dynamic latch is reduced by a factor of the preamplifier gain. A 4-bit flash A/D converter circuit has been designed and fabricated by 0.6-μm CMOS process. Low differential nonlinearity of less than ±4 mV has been verified by the measurements on test circuits, showing 8-bit resolution capability. Very low power operation at 4.3 μW per MS/s per comparator has also been achieved  相似文献   

18.
A 4-bit noninterleaved flash ADC implemented in 0.18-mum digital CMOS achieves a sampling rate of 4 GS/s. A 32 mum by 32 mum, on-chip differential inductor in each comparator extends the sampling rate without an increase in power consumption. A combination of DAC trimming and comparator redundancy reduces the measured DNL and INL to less than 0.15 LSB and 0.24 LSB, respectively. The measured ENOB with a 100 MHz full-power input is 3.84 bits and 3.48 bits, at 3 GS/s and 4GS/s, respectively. The ADC achieves a bit error rate of less than 10-11 at 4 GS/s.  相似文献   

19.
设计一种中速高精度模拟电压比较器,该比较器采用3级前置放大器加锁存器和数字触发电路的多级结构,应用失调校准技术消除失调,应用共源共栅结构抑制回程噪声干扰;应用数字触发电路获得高性能数字输出信号,设计采用0.35μm5VCMOS工艺实现一个输入电压2.5V、速度1MS/s、精度12位的逐次逼近型MD转换器。Hspice仿真结果表明:在5V供电电压下,速度可达20MHz,准确比较0.2mV电压,有效校准20mV输入失调,功耗约1mW。  相似文献   

20.
A power and area efficient CMOS clock/data recovery circuit designed for a wide range of applications in high-speed serial data communications is described. It uses an analog phase-locked loop (PLL) to generate the high-speed clocks with an absolute rms jitter of less than 60 ps and a digital PLL which is designed to minimize chip area and power consumption to recover the clock and data signals from the incoming data stream. Fabricated in a 0.8 μm single-polysilicon, double-metal CMOS process, the digital PLL only consumes 45 mW at 125 Mb/s from a single 5 V supply, while the analog PLL consumes 92 mW. The chip area is 1.7 mm2 for the digital PLL and 0.44 mm2 for the analog PLL. It can handle an input data rate up to 280 Mb/s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号