首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   6篇
数理化   7篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
侯海生  王光明  李海鹏  蔡通  郭文龙 《物理学报》2016,65(2):27701-027701
针对相位梯度超表面在灵活操控电磁波与提高天线增益中的潜在应用,提出一种新型的宽带超表面单元,实现了在较宽频带范围内操控电磁波波前与提高天线增益.本文首先设计了一种圆环十字形对称单元来控制反射波的相移量,单元厚度为1 mm,尺寸为0.3λ_0(λ_0=20 mm),工作频段15—18 GHz,而后验证了由该单元组成的相位梯度超表面在15—18 GHz范围内对电磁波的奇异反射与聚焦特性.最后将设计的反射聚焦超表面应用于提高天线增益中,仿真与测试结果均表明,天线最高增益在15—18 GHz内平均增加了11 d B且-1 dB增益带宽为15—18 GHz(相对带宽为18.2%).由于厚度薄、重量轻、频带宽,设计的该单元拓展了相位梯度超表面在微波领域的应用,有望为高增益天线的实现提供新的方法.  相似文献   
2.
Phase gradient metasurfaces(PGMS) offer a fascinating ability to control the amplitude and phase of the electromagnetic(EM) waves on a subwavelength scale, resulting in new applications of designing novel microwave devices with improved performances. In this paper, a reflective symmetrical element, consisting of orthogonally I-shaped structures, has been demonstrated with an approximately parallel phase response from 15 GHz to 22 GHz, which results in an interesting wideband property. For practical design, a planar antenna is implemented by a well-optimized focusing metasurface and excited by a self-designed Vivaldi antenna at the focus. Numerical and experimental results coincide well. The planar antenna has a series of merits such as a wide 3-d B gain bandwidth of 15–22 GHz, an average gain enhancement of 16 d B, a comparable aperture efficiency of better than 45% at 18 GHz, and also a simple fabrication process. The proposed reflective metasurface opens up a new avenue to design wideband microwave devices.  相似文献   
3.
4.
对IPO冷热周期内的时变波动特征首次建立区制转换GARCH模型加以有效描述,以及用计数数据分位数回归模型研究发行数量和发行到上市持续期的关系。通对1994年1月至2010年8月间我国A股IPO市场新股的实证研究得到若干新结论:上市首日收益率和发行到上市的持续期是发行数量的诱因,导致这三个描述IPO行为主要变量的周期行为之间存在相位差;发行到上市的持续期的降低对发行数量的增加有积极地促进作用;除了发行数量在淡季状态波动持续性较强外,其他变量在淡旺季的波动持续性均较弱;旺季时(调整后的)上市首日收益率、发行数量的波动方差比淡季时大,而发行到上市的持续期则相反;我国A股IPO发行市场的淡旺季周期的形成主要受到IPO发行政策、宏观经济环境、投资者情绪的影响控制。  相似文献   
5.
Circularly polarized(CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed singlelayered Pancharatnam–Berry(PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width(HPBW) of 13°at about 14 GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.  相似文献   
6.
郭文龙  王光明  李海鹏  张昆  蔡通 《中国物理 B》2016,25(10):104101-104101
We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz.  相似文献   
7.
A novel ultra-compact single-negative waveguide metamaterial (WG-MTM) based on a complementary anti- parallel-spiral line (CAPAL) is proposed and investigated by circuit model analysis, electromagnetic simulation and extraction of the effective parameters. The cell is ultra-compact with dimensions of λ0/22.08 × λo/22.08, which advances a step further toward homogenized concept. Two band-gaps attributing to the negative permeability and negative permittivity appear when the CAPAL-WG-MTM cells response to the time-varying perpendicular E-field and parallel H-field, and thus a high decoupling efficiency is obtained. Mutual coupling reduction of about 8.27dB is realized by inserting 7 ×1 CAPSL-WG-MTM cells between two closely placed antenna elements with an edge-to-edge separation of only λ0/19.23. Moreover, the radiation characteristics are improved for both the patch element and the antenna array. A higher front-to-back ratio is obtained for the patch element and an increase of 0.64dB for the gain of the antenna array by using the CAPAL-WG-MTM structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号