首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   13篇
数理化   19篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2010年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有19条查询结果,搜索用时 515 毫秒
1.
甲烷是一种在自然界中大量存在的原材料,在取代原油和合成重要化工产品等许多领域具有潜在的应用价值. 然而,由于CH4中C-H键的键能特别大(约~4.5 eV),如何实现甲烷的绿色有效转化在化学化工领域仍然是一个挑战. 本文采用密度泛函理论对Co3O4(001)和(011)晶面活化甲烷C-H键的机理进行了理论研究,得到了如下结论:(1) CH4的C-H键在Co3O4晶面的解离具有很高的活性,只需要克服大约1 eV的能垒;(2)与Co2相连的Co-O离子对是CH4活化的活性位点,其中两个带正负电荷的离子对C-H解离起着协同作用,帮助产生Co-CH3和O-H物种;(3)(011)面的反应活性明显大于(001)面,与实验的观察一致. 本文的计算结果表明,Co3O4纳米晶面对CH4中C-H键的活化表现出明显的晶面效应和结构敏感效应,Co-O离子对活性中心对于活化惰性的C-H键发挥了关键作用.  相似文献   
2.
选用纤维二糖作为探针分子,探索纤维素催化转化制备乙二醇过程的反应路径.分别考察了纤维二糖和葡萄糖在双组分催化剂H2WO4和Ru/C下的催化反应活性.结果表明,乙二醇不仅来自于纤维二糖水解产物葡萄糖的逆羟醛缩合作用,同时也可以来自于纤维二糖的直接逆羟醛缩合过程.而且,纤维二糖的直接逆羟醛缩合作用对糖苷键的水解也有一定的促进作用.比较发现,钨基催化剂作用下纤维二糖的逆羟醛缩合反应活性比葡萄糖要低,因此乙醇醛可以缓慢产生并在Ru/C催化剂上迅速加氢生成乙二醇.使得以纤维二糖作为原料比以葡萄糖作为原料时获得更高的乙二醇收率.  相似文献   
3.
报道了罗丹明乙二醛酰腙的合成及与三聚氰胺的反应。在pH 3.0的缓冲溶液中三聚氰胺对罗丹明乙二醛酰腙的荧光强度有增强作用,其增强程度与三聚氰胺的浓度成正比,据此建立了一种新的测定三聚氰胺含量的荧光分析法。该方法线性范围为0.5~10.0 mg/L,r=0.994,检出限为0.15 mg/L,样品测定的RSD为1.7%(n=7)。  相似文献   
4.
负载型纳米贵金属催化剂是用于多相催化反应的重要的催化剂之一,也是各国催化科学与技术研发的重点,其工业应用也越来越广泛.理论和实验的研究结果均表明,当载体表面的金属粒子尺寸减小至亚纳米级乃至更小的低配位、不饱和的原子团簇时,它们常常成为诱发催化反应的活性中心,呈现更高的催化活性和选择性.将负载的金属尺寸由纳米量级减小至分散的金属团簇甚至单原子而使每个原子成为反应的活性位点已成为研究的重点.最近,由张涛等首次合成的单原子催化剂(SAC)Pt1/FeOx引起了国内外催化及表面科学工作者的极大关注.单原子催化剂作为连接均相催化剂和多相催化剂的桥梁,不仅具有非均相催化剂的稳定、易于与反应体系分离、易表征等优点,而且具有均相催化剂活性中心结构均一、活性中心原子利用率百分之百等优点.一方面,单原子催化剂给多相催化领域注入了新的活力,另一方面也更有利于运用量子与计算化学的研究方法建立与实验相匹配的理论模型并从原子水平上进一步理解多相催化反应的微观作用机理.实验和理论的研究结果表明,其它单原子催化剂如Ir1/FeOx,Au1/FeOx和Ni1/FeOx催化CO氧化反应表现出不同的活性.然而,底物FeOx中的Fe同样是第VIII族中的3d过渡金属,却在低温下对CO氧化反应没有催化活性.我们围绕这一问题,重点研究了底物FeOx在负载单原子Pt1前后催化CO氧化的反应机理和活性,解释了单原子催化剂Pt1/FeOx相比于底物FeOx为何具有如此高的催化活性的原因.我们采用Vienna Ab-initio Simulation Package(VASP)从头算模拟软件和密度泛函理论(DFT)的广义梯度近似(GGA)进行了理论计算.其中,选择PBE泛函描述体系的交换关联相互作用,用投影缀加波(PAW)赝势基组方法描述体系中的电子和离子实之间的相互作用,对Fe原子采用了DFT+U方法进行d电子强相关校正,并使用Dimer计算方法搜寻反应过渡态.研究结果表明,底物FeOx中氧空位的再生伴随第二个CO2分子从催化剂表面脱附的过程需要较高的活化势垒(1.09 eV),这一过程是整个CO氧化反应的决速步.与此相比较,Pt1/FeOx催化剂中,由于Pt原子代替了表面Fe原子,导致电子结构及性质的显著变化,有利于CO的活化、氧化和CO2的脱附.我们从电子能量态密度(DOS)和Bader电荷分析及模型分子团簇的轨道相互作用的角度进一步分析了两种催化剂存在差异的本质;揭示了单原子催化剂Pt1/FeOx中Pt1和底物FeOx之间的相互作用的机理及催化剂表面Pt单原子在催化反应过程中的关键作用.  相似文献   
5.
轴承是高速机电设备的核心部件。高温超导磁浮轴承具有载重大、刚度高、抗干扰能力强、无需主动控制等诸多优点,可以实现重载高速运行,因此在高速机电设备中具有巨大应用潜力。文中针对中小型飞轮储能器、离心机、脉冲电机等设备实际工程需求,设计并优化完成了一款小型高速超导磁浮轴承。通过三维仿真程序,对磁浮轴承中超导块材和永磁阵列的组合方式和电磁力进行了计算,并对不同气隙下的轴承性能进行了对比。相较于传统二维仿真计算,三维仿真结果考虑了超导块材的空间位置分布,更贴近实际应用,可以作为工程设计的直接参考。相关设计表明,通过合理优化,小型超导磁浮轴承具备足够悬浮力和导向力刚度,可以满足相关系统的工程应用需求。  相似文献   
6.
一种表征羟基自由基的新型荧光探针   总被引:13,自引:0,他引:13  
表征羟基自由基 (· OH)的方法主要有电子自旋共振法[1] 和芳环羟基化法[2 ,3] 两大类 .电子自旋共振法灵敏度不高 ,且仪器设备昂贵 ,不适于常规分析 .芳环羟基化法操作较简单 ,灵敏度高 ,但芳环羟基化的产物往往不止一种 ,使得定量测定变得复杂 .其它方法如高效液相色谱法[4 ] ,化学发光法[5] 等也有报道 .顺磁性氮氧化合物能有效地清除自由基 [6 ,7] ,同时也是一种芳烃单重激发态的有效猝灭剂 [8,9] .当顺磁性氮氧化合物与荧光分子共价结合 ,所形成的荧光分子 -氮氧自由基复合物 (即自旋标记荧光分子 )仍保留对自由基反应的活性 ,但由于…  相似文献   
7.
CO_2是一种储量丰富、廉价易得的碳资源,借助可再生能源的CO_2资源化利用是实现可持续发展战略的有效途径.近年来,单原子催化剂因其独特的结构特性被广泛应用,已成为连接多相与均相催化的桥梁.本文综述了单原子催化剂在CO_2催化还原转化中的应用,基于CO_2在多相纳米催化与均相催化体系中的反应特点,对单原子催化剂的设计及不同外场环境下活性中心电子结构的调控机制进行探讨,进而展望了单原子催化剂在CO_2资源化利用中的发展前景与挑战.  相似文献   
8.
In Se作为一种典型的二维层状半导体材料,具有优异的电学性能以及适中可调的带隙,在光电器件中表现出诱人的应用前景.然而有研究表明,单硒空位(Vse)体系的In Se易受O2分子影响,造成In Se材料降解,严重影响其在电子器件领域的应用.本文基于In Se降解机理,提出了碲(Te)替位掺杂的方法,用于提升该材料的环境稳定性.利用密度泛函理论对不同体系电子结构、吸附能、能量反应路径等进行分析,发现Te掺杂不仅显著改善缺陷引起的In Se降解问题,同时可消除Vse产生的缺陷态,起到缺陷补偿作用.具体研究结果如下:1) O2分子在Te掺杂In Se表面(In Se-Te)的解离能垒高达2.67 e V,说明其具有较强的抗氧化能力;2) O2分子在In Se-Te表面保持3.87?的距离,吸附能仅有–0.03 e V,表明O2分子物理吸附在其单层表面;3) Te掺杂不仅提升材料抗氧化能力,同时还消除了Vse产生的缺陷态.该研究结果将有助于进一步提升In Se二维材料器件的环境稳定性,推动In Se二维器件...  相似文献   
9.
化学选择性是评价催化剂性能最重要的参数之一,它直接决定了产物的经济价值及后续的分离成本.传统的负载型金属催化剂由于其金属粒径分布不均,且不同原子数组成的粒子通常具有特征产物选择性,从而限制化学选择性的提高;另一方面,对于金属多原子活性中心,反应物在催化剂表面可以存在多种吸附构型进而衍化为不同产物,产物可控性差.因此,获得金属尺寸均一,且具有原子分散的活性中心,即单原子催化剂,成为官能团多相催化转化高选择性的迫切需求.本课题组通过400 oC还原1%-Pd/ZnO得到PdZn金属间化合物,依据其规律排布的Pd-Zn-Pd单元获得Pd基单原子催化剂.该催化剂在乙烯化工中少量乙炔的加氢转化反应中获得令人欣喜的催化性能——兼具有乙炔的高转化率和乙烯的高选择性.结合微量吸附量热、理论计算等表征,Pd活性中心在PdZn金属间化合物中的特殊空间排布是其优异催化性能的根源,即乙炔以较强的σ键吸附在两个相邻的单Pd金属中心,易吸附活化加氢生成乙烯,而乙烯则吸附于单Pd金属中心,较弱的π键形式吸附有利于其脱附避免过渡加氢.基于前期研究,构筑具有均一单金属中心的负载型单原子催化剂是获得高选择性的另一有效方法,且较之于PdZn金属间化合物催化剂,该类单原子催化剂兼具有原子利用率最大化的优点.本文采用等体积浸渍法制备Pd/ZnO催化剂,通过降低Pd金属含量(1 wt%→0.1 wt%→0.01 wt%)并在较低的温度下(100 oC)还原(H2-TPR表明高温还原形成PdZn金属间化合物型合金)得到负载型单原子催化剂(Pd1/ZnO SAC).高分辨电镜结果表明,当Pd负载量由1%降至0.1%,金属纳米颗粒的粒径尺寸显著降低,而在0.01%-Pd/ZnO催化剂表面,Pd活性中心则以单原子状态分散于载体ZnO表面.X-射线吸收光谱及电子能谱表明,随着负载量的降低,Pd活性物种具有更高的正电性.该催化剂在乙炔选择性加氢反应中表现出更加优越的催化性能,具有与PdZn催化剂相当的高选择性,而更优的比活性.这归结于Pd1/ZnO单原子催化剂的Pdδ+单原子活性中心有助于其与乙炔的静电相互作用并吸附活化加氢生成乙烯,并促使乙烯以较弱的π键吸附,从而易于从催化剂表面脱附获得高选择性.  相似文献   
10.
采用改进的两步还原法制备了SiO2负载的Au-Ni合金催化剂,催化剂中Au-Ni纳米颗粒高度分散于SiO2载体表面. Au-Ni合金催化剂在温和条件下芳香硝基化合物选择加氢反应中表现出比两种单金属催化剂更高的活性和选择性,体现出Au-Ni之间明显的协同作用.其中AuNi3/SiO2催化剂具有最好的性能,反应70 min,转化率和选择性分别达到90.8%和93.0%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号