首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We develop a hydroelastic model based on a {3, 2}-order sandwich composite panel theory and Wagner’s water impact theory for investigating the fluid–structure interaction during the slamming process. The sandwich panel theory incorporates the transverse shear and the transverse normal deformations of the core, while the face sheets are modeled with the Kirchhoff plate theory. The structural model has been validated with the general purpose finite element code ABAQUS®. The hydrodynamic model, based on Wagner’s theory, considers hull’s elastic deformations. A numerical procedure to solve the nonlinear system of governing equations, from which both the fluid’s and the structure’s deformations can be simultaneously computed, has been developed and verified. The hydroelastic effect on hull’s deformations and the unsteady slamming load have been delineated. This work advances the state of the art of analyzing hydroelastic deformations of composite hulls subjected to slamming impact.  相似文献   

2.
In the maritime environment slamming is a phenomenon known as short duration impact of water on a floating or sailing structure. Slamming loads are local and could induce very high local stresses. This paper reports a series of impact test results and investigate the slamming loads and pressures acting on a square based pyramid. In this study the slamming tests have been conducted at constant velocity impact with a hydraulic high speed shock machine. This specific experimental equipment avoids the deceleration of the structure observed usually during water entry with drop tests. Three velocities of the rigid pyramid have been used (10, 13 and 15 m s−1). Time-histories of local pressures, accelerations and slamming loads were successfully measured. The relationship between the pressure magnitude and the impact velocity is obtained and the spatial distribution of pressures on pyramid sides is characterized. The impact velocity was found to have a negligible influence in predicting the maximum pressure coefficient.  相似文献   

3.
The paper deals with modelling of hygro-thermal performance and thermo-chemical degradation of concrete exposed to high temperature. Several possible simplifications in modelling of heat and mass transport phenomena in heated concrete are considered and their effect on the results of numerical simulations is analyzed.A mathematical model of concrete at high temperature, already extensively validated with respect to experiments, is used as the reference model. It is based on mechanics of multiphase porous media and considers all important couplings and material nonlinearities, as well as different properties of water above the critical point of water, i.e. 647.3 K (374.15 °C).In this part of the paper, first physical phenomena, as well as heat and mass flux and sources in a concrete element are studied, both during slow and fast heating process, to examine the relative importance of different flux components. Then, the mathematical model of concrete at high temperature, developed by Authors in the last 10 years, is briefly presented and for the first time all the constitutive relationships of the model are summarized and discussed in detail. Finally, the method of numerical solution of the model equations is thoroughly presented.In the companion paper (part II) a brief literature review of the existing mathematical models of concrete at high temperature and a summary of their main features and physical assumptions will be presented. Then, extensive numerical studies will be performed with several simplified models, neglecting chosen physical phenomenon or flux components, to evaluate the difference between the results obtained with the simplified models and with the reference model. The study will concern hygric, thermal and degradation performance of 1-D and 2-D axisymmetric concrete elements during fast and slow heating. The analysis will allow us to indicate which simplifications in modeling of concrete at high temperature are practically and physically possible, without generating excessive errors with respect to the full reference model.  相似文献   

4.
Quantitative measurement of liquid mass distribution is demonstrated in an impinging-jet atomizing spray using a broadband, ∼80 keV X-ray tube source for 2-D radiography and 3-D computed tomography (CT). The accuracy, precision, and sensitivity of these data are evaluated using narrowband, ∼10 keV, synchrotron radiation from the Argonne National Laboratory Advanced Photon Source (APS) at the same flow conditions. It is found that the broadband X-ray tube source can be used for 2-D measurement of the equivalent path length (EPL) and 3-D CT imaging of liquid mass distribution with typical error of 5–10%. Data are compared for cases with and without the use of potassium iodide (KI), which at 15% concentration by mass increases the attenuation coefficient eightfold and enables 2-D and 3-D measurement of EPL with a signal-to-noise ratio (SNR) of 5:1 down to 15 μm. At this concentration, the effects of energy-dependent attenuation (i.e., spectral beam hardening) are negligible for EPL up to 5 mm. Hence, the use of broadband X-ray tube sources is feasible for many practical engineering sprays with a dynamic range in EPL of ∼330:1. The advantages and limitations of using broadband and narrowband X-ray sources are discussed, and recommendations for improving performance are presented.  相似文献   

5.
In this paper, a novel thermal filter-matrix lattice Boltzmann model based on large eddy simulation (LES) is proposed for simulating turbulent natural convection. In this study, the Vreman subgrid-scale eddy-viscosity model is introduced into the present framework of LES to accurately predict the flow in near-wall region. Two dimensional numerical simulations of natural convection in a square cavity were performed at high Rayleigh number varying from 107 to 1010 with a fixed Prandtl number of Pr = 0.71. The influences of the higher-order terms upon the present results at high Rayleigh numbers are examined, taking Ra = 107 and 108 as the example, revealing that the proper minimization of the higher-order terms can improve numerical accuracy of present model for high Rayleigh convective flow. For the turbulent convective flow, the time-averaged quantities in the median lines are presented and compared against those available results from previous studies. The general structure of turbulent boundary layers is well predicted. All numerical results exhibit good agreement with the benchmark solutions available in the previous literatures.  相似文献   

6.
Heating of thin foil targets by an high power laser at intensities of 1017–1019 W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene-N) foils with a microdot made of a mixture of germanium and titanium buried at depth of 1.5 μm. The L-shell spectra from the germanium and the K-shell spectra from the titanium were taken using crystal spectrometers recording onto film and an ultra fast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1 ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional–radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions were inferred from the CR modelling using FLYCHK to be 800 ± 100 eV and 1.5 ± 0.5 g/cc. The best fit to the LTE models was at a temperature 20% lower than with the CR model. Though the sample departs from LTE significantly useful spectral comparisons can still be made. The results and comparisons are discussed along with improvements to the experimental technique to achieve conditions closer to LTE.  相似文献   

7.
The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to predict correctly the experimental results in the cavity.  相似文献   

8.
9.
The efficiency of pesticide application to agricultural fields and the resulting environmental contamination highly depend on atmospheric airflow. A computational fluid dynamics (CFD) modelling of airflow within plant canopies using 3D canopy architecture was developed to understand the effect of the canopy to airflow. The model average air velocity was validated using experimental results in a wind tunnel with two artificial model trees of 24 cm height. Mean air velocities and their root mean square (RMS) values were measured on a vertical plane upstream and downstream sides of the trees in the tunnel using 2D hotwire anemometer after imposing a uniform air velocity of 10 m s?1 at the inlet. 3D virtual canopy geometries of the artificial trees were modelled and introduced into a computational fluid domain whereby airflow through the trees was simulated using Reynolds-Averaged Navier–Stokes (RANS) equations and k-ε turbulence model. There was good agreement of the average longitudinal velocity, U between the measurements and the simulation results with relative errors less than 2% for upstream and 8% for downstream sides of the trees. The accuracy of the model prediction for turbulence kinetic energy k and turbulence intensity I was acceptable within the tree height when using a roughness length (y0 = 0.02 mm) for the surface roughness of the tree branches and by applying a source model in a porous sub-domain created around the trees. The approach was applied for full scale orchard trees in the atmospheric boundary layer (ABL) and was compared with previous approaches and works. The simulation in the ABL was made using two groups of full scale orchard trees; short (h = 3 m) with wider branching and long (h = 4 m) with narrow branching. This comparison showed good qualitative agreements on the vertical profiles of U with small local differences as expected due to the spatial disparities in tree architecture. This work was able to show airflow within and above the canopy in 3D in more details.  相似文献   

10.
This paper derives a new three-dimensional (3-D) analytical solution for the indirect tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing rocks, and by ASTM (American Society for Testing and Materials) for testing concretes. The present solution for solid circular cylinders of finite length can be considered as a 3-D counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros in 1959. The contacts between the two steel diametral loading platens and the curved surfaces of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards respectively. The equilibrium equations of the linear elastic circular cylinder of finite length are first uncoupled by using displacement functions, which are then expressed in infinite series of some combinations of Bessel functions, hyperbolic functions, and trigonometric functions. The applied tractions are expanded in Fourier–Bessel series and boundary conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 mm (or a contact angle of 4°) whereas for typical asphalt cylinders of 101.6 mm diameter subjected to ASTM indirect tensile tests the contact width is about 10 mm (or a contact angle of 12°). For such contact conditions, 50 terms in both Fourier and Fourier–Bessel series expansions are found sufficient in yielding converged solutions. The maximum hoop stress is always observed within the central portion on a circular section close to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly compressible materials, and to 60% for nearly incompressible materials. The difference in compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 2-D solution, in general, underestimates the maximum tensile stress and cannot predict the location of the maximum hoop stress which typically locates close to the end surfaces of the cylinder.  相似文献   

11.
Zirconia (yttria)–alumina ceramic nanocomposites were fabricated from different powders by spark plasma sintering (SPS). One powder was a commercially available nanocomposite powder TZP-3Y20A, consisting of 3 mol% yttria-stabilized zirconia (3-YSZ) reinforced with 20 wt% alumina, and the other, used as a comparison, was a conventional mechanically mixed powder 3YSZ-20A, a blend made of 3 mol% yttria-stabilized zirconia powder ZrO2 (3Y) and 20 wt% α-alumina powder. The effect of the sintering temperature on the densification, the sintering behavior, the mechanical properties and the microstructure of the composites was investigated. The results showed that the density increased with increasing sintering temperature, and thus, the mechanical properties were strengthened because of the increased densification. The nanocomposite powder TZP-3Y20A was easily sintered, and good mechanical properties were achieved as compared with the powder from the conventional mechanically mixed method, the maximum flexural strength and fracture toughness of which were 967 MPa and 5.27 MPa m1/2, respectively.  相似文献   

12.
Delineation of mini- and micro-scale channels with respect to two-phase flow has been the subject of many research papers. There is no consensus on when the small channel can be characterized as a mini-channel or micro-channel. The idea proposed by this paper is to use the normalized bubble nose radius, liquid film thickness top over bottom ratio, and bubble shape contour, which are found under normal gravity conditions in slug flow through a horizontal adiabatic channel, as the delineation criteria. The input parameters are bubble nose radius and bubble nose velocity as the characteristic length scale and characteristic velocity scale respectively. 3D numerical simulation with ANSYS FLUENT was used to obtain the necessary data. Following CFD practice, a mesh independence study and a numerical model validation against published experimental data were both conducted. Analysis of the numerical simulation results showed that channels with D  100 μm can be characterized as a micro-system, while channels with D  400 μm belong to mini-systems. The region 200 μm  D  300 μm represents a transition from the micro-scale to mini-scale.  相似文献   

13.
The paper deals with modelling of hygro-thermal performance and thermo-chemical degradation of concrete exposed to high temperature. Several possible simplifications in modelling of heat and mass transport phenomena in heated concrete are considered and their effect on the results of numerical simulations is analyzed.In part I of the companion paper, the physical phenomena, and heat and mass flux and sources in a concrete element were studied, both during slow and fast heating process, to examine the relative importance of different flux components. Then, the mathematical model of concrete at high temperature, developed by Authors in the last 10 years, was briefly presented and for the first time all the constitutive relationships of the model are summarized and discussed in detail. Finally, the method of numerical solution of the model equations was thoroughly presented.In this part of the paper a brief literature review of the existing mathematical models of concrete at high temperature and a summary of their main features and physical assumptions is presented first. Then, extensive numerical study is performed with several simplified models, neglecting a chosen physical phenomenon or flux component, to evaluate a difference between the results obtained with the simplified models and with the reference model. The study concerns hygric, thermal and degradation performance of 1-D and 2-D axisymmetric concrete elements during fast and slow heating. The analysis will allow us to indicate which simplifications in modeling of concrete at high temperature are practically and physically possible, without generating excessive differences of the results with respect to the full reference model.  相似文献   

14.
Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (Nx × Ny × Nz=) 160 × 40 × 160 (nx × nz = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the block.  相似文献   

15.
Researches on the collapse behavior of a 3×3×0.7 m tensegrity grid have been conducted with the aim of examining the accuracy of the proposed numerical procedure for investigating the localization or propagation of collapse in these systems. The experimental program consists of tests on the constituent elements and collapse test on the whole system. In the current study, two types of collapse due to sudden rupture of a cable element and buckling of a strut were examined in the studied tensegrity model under load control. It was found that the most important factors that influence the collapse behavior of the tensegrity model are the imperfection amplitude, damping factors and residual stresses of the buckled struts. Based on the obtained results, the finite element model were adjusted, compared and validated with the experimental results until reliable and robust numerical model were achieved.  相似文献   

16.
In this paper, the effect of confining pressure on the mechanical behavior of rock-like materials, such as concrete, is studied by using a coupled elastoplastic damage model. Damage mechanism is coupled, in different manners, with two plastic flow mechanisms: plastic shear mechanism developed under low confining pressure and plastic pore collapse mechanism observed under high confinement. The proposed model is applied to study a series of laboratory tests performed under extremely low to very high confining pressure, up to 650 MPa. The numerical predictions of proposed model are in good agreement with the experimental results.  相似文献   

17.
This paper scrutinises the Large Eddy Simulation (LES) approach to simulate the behaviour of inter-acting particles in a turbulent channel flow. A series of simulations that are fully (four-way), two-way and one-way coupled are performed in order to investigate the importance of the individual physical phenomena occurring in particle-laden flows. Moreover, the soft sphere and hard sphere models, which describe the interaction between colliding particles, are compared with each other and the drawbacks and advantages of each algorithm are discussed. Different models to describe the sub-grid scale stresses with LES are compared. Finally, simulations accounting for the rough walls of the channel are compared to simulations with smooth walls. The results of the simulations are discussed with the aid of the experimental data of Kussin J. and Sommerfeld M., 2002, Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness, Exp. in Fluids, 33, pp. 143–159 of Reynolds number 42,000 based on the full channel height. The simulations are carried out in a three-dimensional domain of 0.175 m × 0.035 m  × 0.035 m where the direction of gravity is perpendicular to the flow. The simulation results demonstrate that rough walls and inter-particle collisions have an important effect in redistributing the particles across the channel, even for very dilute flows. A new roughness model is proposed which takes into account the fact that a collision in the soft sphere model is fully resolved and it is shown that the new model is in very good agreement with the available experimental data.  相似文献   

18.
A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Poisson’s ratio as a function of frequency. The forced vibration responses for the samples under normal and shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear modulus, the present method requires only knowledge of the load mass, geometrical characteristics of a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations. The measured data were used to obtain the viscoelastic properties of the material based on a 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone RTV rubber (Silastic® S2) were used for preparing three samples for axial stress deformation and three samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus, loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from 50 to 320 Hz in the linear deformation regime (at relative deformations 10?6 to 10?4) at temperature 25 °C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load mass was suggested. For this purpose measurements with several masses need to be done. An empirical requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements. Different combinations of the samples with different sizes for the shear and stress measurements exhibited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio, which appeared to be about 0.04–0.06 for the material of the present study.  相似文献   

19.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

20.
We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady when the Deborah number (using the usual definition) is greater than De  1.3, for an extensibility parameter of the model of L2 = 144. The transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder radius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation with time. The results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, which have been observed in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the search for steady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually becomes unsteady. For a lower extensibility parameter, L2 = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder which becomes unsteady and pulsates in time for Deborah numbers larger than De  4.0–4.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号