首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
It is known that bubble size affects seriously the average void fraction in bubbly flows where buoyant velocities vary considerably with bubble size. On the contrary, there is no systematic literature report about bubble size effects on the intensity and frequency of void fraction fluctuations around the average void fraction. This work aims to provide such information. An electrical impedance technique is employed along with non-intrusive ring electrodes to register void fraction fluctuations down to 10−5. Bubble size fluctuations are estimated from high resolution optical images. Experiments are conducted in co-current upward dispersed bubble flow inside a 21 mm tube with average bubble size between ∼50 and ∼700 μm. Water and blood simulant are used as test liquids with velocity from ∼3 to ∼30 cm s−1. The above resemble conditions of Decompression Sickness (DCS) in the bloodstream of human vena cava. It is found that the intensity and frequency of void fraction fluctuations vary appreciably with bubble size at constant gas and liquid flow rates. Moreover, these variations are not random but scale with bubble size. As a first step to quantify this effect, an empirical expression is derived that relates average bubble size to the ratio standard deviation/average value of void fraction.  相似文献   

2.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

3.
M-Band and L-Band Gold spectra between 3 and 5 keV and 8 and 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a ‘hot hohlraum’. This is a reduced-scale hohlraum heated with ≈9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s  2p, 3d5/2  2p3/2 and 3d3/2  2p1/2 transitions at ≈9 keV, ≈10 keV and ≈13 keV, respectively. M-Band 5f  3d, 4d  3p, and 4p  3s transition features from Fe-like to P-like gold were also recorded between 3 and 5 keV. Modeling from the radiation–hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.  相似文献   

4.
Hierarchical sea-urchin-shaped manganese oxide microspheres were synthesized via a facile method based on the reaction between KMnO4 and MnSO4 in HNO3 solution at 50 °C. The average diameter of the microspheres is ∼850 nm. The microspheres consist of a core of diameter of ∼800 nm and nanorods of width ∼50 nm. The nanorods exist at the edge of the core. The Brunauer–Emmett–Teller surface area of the sea-urchin-shaped microspheres is 259.4 m2/g. A possible formation mechanism of the hierarchical sea-urchin-shaped microspheres is proposed. The temperature for 90% conversion of benzene (T90%) on the hierarchical urchin-shaped MnO2 microspheres is about 218 °C.  相似文献   

5.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

6.
Fine particulate matter (PM2.5) samples were collected over two years in Xi’an, China to investigate the relationships between the aerosol composition and the light absorption efficiency of black carbon (BC). Real-time light attenuation of BC at 880 nm was measured with an aethalometer. The mass concentrations and elemental carbon (EC) contents of PM2.5 were obtained, and light attenuation cross-sections (σATN) of PM2.5 BC were derived. The mass of EC contributed ∼5% to PM2.5 on average. BC σATN exhibited pronounced seasonal variability with values averaging 18.6, 24.2, 16.4, and 26.0 m2/g for the spring, summer, autumn, and winter, respectively, while averaging 23.0 m2/g overall. σATN varied inversely with the ratios of EC/PM2.5, EC/[SO42−], and EC/[NO3]. This study of the variability in σATN illustrates the complexity of the interactions among the aerosol constituents in northern China and documents certain effects of the high EC, dust, sulfate and nitrate loadings on light attenuation.  相似文献   

7.
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime).  相似文献   

8.
Thermochromic liquid crystals (TLCs) have been widely employed by researchers in heat transfer and fluid flow communities as a reliable and non-intrusive temperature measurement tool due to their unique optical properties such as birefringence, optical activity, circular dichroism and selective reflection of colours in the visible spectrum as function of temperature. The use of narrowband TLCs are attractive for temperature and heat transfer measurements due to their higher precision in temperature measurements and due to the fact that narrowband TLCs are less affected by variations in illumination-viewing angles and illumination disturbances. Narrowband TLCs have been used with full intensity-matching methods to provide robust image processing for measurements of thermal parameters in transient heat transfer tests. Calibration of narrowband TLCs is necessary in order to obtain the intensity-temperature relationship of the TLCs. Film thickness is one of the factors which affects calibrations of TLCs. In this research, film thicknesses of 10, 20, 30, 40 and 50 μm were investigated on green intensity-based calibrations of R35C1W TLC during heating and cooling. Results showed an increase in magnitude of peak green intensity with increasing film thickness, with a percentage increase of nearly 18% when film thickness increased from 10 to 50 μm. Results also showed an inconsistent shift in temperature at which peak green intensity occurs, with a maximum shift of 0.40 °C, suggesting that film thickness effects may be insignificant for narrowband TLCs compared with wideband TLCs. A theoretical method for estimating the volume of TLC coating required to achieve a desired film thickness has also been described in this paper, based on the surface area and dry solids content of the TLC. The method is easily implemented and applicable for sprayable TLC coatings.  相似文献   

9.
Previously we had developed a microfluidic system that can be easily fabricated by bending a stainless-steel tube into large circular loops. In this study, a fast and continuous preparation method for superfine TiO2 nanoparticles (TiO2-NPs) was developed for the aforementioned microfluidic system. The proposed method can yield anatase TiO2 in 3.5 min, in contrast to the traditional hydrothermal reaction method, which requires hours or even days. Different reaction conditions, such as reaction temperature (120–200 °C), urea concentration (20–100 g/L), and tube length (5–20 m) were investigated. X-ray diffraction and Brunauer–Emmett–Teller analysis indicate that the as-prepared TiO2-NPs have crystalline sizes of 4.1–5.8 nm and specific surface areas of 250.7–330.7 m2/g. Transmission electron microscopy images show that these TiO2-NPs have an even diameter of approximately 5 nm. Moreover, because of their small crystalline sizes and large specific surface areas, most of these as-prepared TiO2-NPs exhibit considerably better absorption and photocatalytic performance with methylene blue than commercial P5 TiO2 does.  相似文献   

10.
In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m2 s and saturation temperatures of 22 °C, 31 °C and 41 °C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity.  相似文献   

11.
Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0–40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9–18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were “lens”-shaped. “Regular” open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH4 + 10% H2)/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH4 + 10% H2)/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH4 + 10% H2)/air mixtures for tubes having internal diameters in the range of 18.4–50.2 mm. This effect has been attributed to the stronger combined effect of the preferential diffusion and flame stretch in narrower tubes for flames which resemble rising bubble.  相似文献   

12.
Liquid atomization is useful in many applications, such as engineering, science, pharmaceutics, medicine, forensics and others. In the present research, an innovative methodology and a new device for atomization of liquids into mists of micron and submicron droplets have been developed. The new liquid-atomization method exploits the physical phenomenon of fragmentation of thin liquid films into fine micron and submicron droplets by gas jets. For several tested prototypes, the direct observations using a high-speed visualization technique have demonstrated that bubbles were generated within a liquid and their shells have been subsequently destroyed by applying a mechanical impulse (pressure of a compressed air) once the bubbles came over the liquid surface. The main characteristics of the generated tap water mists have been experimentally measured by means of the laser diffraction technique under various conditions for each prototype. One of the prototype devices allowed obtaining mists containing 90–99% of droplets smaller than 1 µm, with the minimum arithmetic and Sauter mean droplet diameters of 1.48 µm and 2.66 µm, and the 2.64 ml/min of droplet flow rate for 3.5 bar manometer pressure of atomizing air. The gas to liquid mass ratios (GLR) in the new device are depending on the atomizing tube length and the number of perforated orifices in the tube: more the tube length, hence more the number of perforated orifices, and therefore more liquid droplets will form for the same gas flow rate. The measured GLR values related to 1 m length of the utilized atomizing tube were in the range of 0.65–1.06, and for the specifically utilized atomizing tube of 72 mm length were among 9.07–14.67. The results of this study demonstrate that the developed method of generation of very fine droplet mists has many advantages over the existing techniques and can be perspective for many practical applications.  相似文献   

13.
Flower-like microstructured nickel was synthesized by a facile mixed-solvent thermal process. The structure, morphology, and magnetic properties of the reaction products were investigated, respectively, by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The results showed that the products consisted of a face-centered cubic (fcc) structure with lattice constant of α = 3.524 Å. The average diameter of flower-like microstructured nickel was about 5 μm and the thickness of a single flake was about 100 nm. Magnetic measurement showed that these powders exhibited ferromagnetic characteristics.  相似文献   

14.
The studies emphasize investigation of plasma formation, implosion, and radiation features as a function of two load configurations: compact multi-planar and cylindrical wire arrays. Experiments with different Z-pinch loads were performed on 1.6 MA, 100 ns, Zebra generator at University of Nevada, Reno. The multi-planar wire arrays (PWAs) were studied in open and closed configurations with Al, Cu, brass, Mo and W wires. In the open magnetic configurations (single, double, triple PWAs) magnetic fields are present inside the arrays from the beginning of discharge, while in closed configurations (prism-like PWA) the global magnetic field is excluded inside before plasma flow occurs. The new prism-like PWA allows high flexibility in control of implosion dynamics and precursor formation. The spectral modeling, magneto-hydrodynamic (MHD) and wire ablation dynamic model (WADM) codes were used to describe the plasma evolution and plasma parameters. Experimentally observed electron temperature and density in multiple bright spots reached 1.4 keV and 5 × 1021 cm?3, respectively. Two types of bright spots were observed. With peak currents up to 1.3 MA opacity effects became more pronounced and led to a limiting of the X-ray yields from compact cylindrical arrays. Despite different magnetic energy to plasma coupling mechanisms early in the implosion a comparison of compact double PWA and cylindrical WA results indicates that during the stagnation stage the same plasma heating mechanism may occur. The double PWA was found to be the best radiator tested at University scale 1 MA generator. It is characterized by a combination of larger yield and power, mm-scale size, and provides the possibility of radiation pulse shaping. Further, the newer configuration, the double PWA with skewed wires, was tested and showed the possibility of a more effective X-ray generation.  相似文献   

15.
Previous experiments have shown that the distinct features of macro-martensitic band nucleation and propagation in micro-tube under tension are in three stages: the initiation and propagation of a single helical band  self-merging  propagation of the cylindrical band. In this paper, the martensitic formation and helical band propagation in the tube at different temperatures are modeled. The free energy function of the tube is formulated by introducing an equivalent method to calculate the stress and strain disturbances in the helical martensitic domain, and the phase transformation criterion is derived based on thermodynamics. The simulations successfully capture the main features of nucleation, pattern evolution and variation of front velocity of the helical martensitic band in the tube. The analytical results and the comparison with experiments are also discussed in this paper.  相似文献   

16.
A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary (IB) method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet throughout a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient (ϕ), bending coefficient (γ), the aspect ratio (l/d) of the elastic tube, and the frequency (f) of the pumping chamber. As the stretching and bending coefficients of the elastic tube increased, the net flow through the valveless pump decreased. Elastic tubes with aspect ratios in the range of 2  l/d  3 generated a higher flow rate than that generated for tubes with aspect rations of l/d = 1 or 4. As the frequency of the pumping chamber increased, the net flow rate of the pump for l/d = 2 increased. However, the net flow rate for l/d = 3 was nonlinearly related to the pumping frequency due to the complexity of the wave motions. Snapshots of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the average gap in the elastic tube and the average flow rate of the pump was analyzed. A smaller gap in the elastic tube during the expansion mode and a wider gap in the elastic tube during the contraction mode played a dominant role in generating a high average flow rate in the pump, regardless of the stretching coefficient (ϕ), the aspect ratio (l/d) of the elastic tube, or the pumping frequency of the pumping chamber (f).  相似文献   

17.
Mass concentration and isotopic values δ13C and 14C are presented for the water-insoluble refractory carbon (WIRC) component of total suspended particulates (TSP), collected weekly during 2003, as well as from October 2005 to May 2006 at the WMO-GAW Mt. Waliguan (WLG) site. The overall average WIRC mass concentration was (1183 ± 120) ng/m3 (n = 79), while seasonal averages were 2081 ± 1707 (spring), 454 ± 205 (summer), 650 ± 411 (autumn), and 1019 ± 703 (winter) ng/m3. Seasonal variations in WIRC mass concentrations were consistent with black carbon measurements from an aethalometer, although WIRC concentrations were typically higher, especially in winter and spring. The δ13C PDB value (−25.3 ± 0.8)‰ determined for WIRC suggests that its sources are C3 biomass or fossil fuel combustion. No seasonal change in δ13C PDB was evident. The average percent Modern Carbon (pMC) for 14C in WIRC for winter and spring was (67.2 ± 7.7)% (n = 29). Lower pMC values were associated with air masses transported from the area east of WLG, while higher pMC values were associated with air masses from the Tibetan Plateau, southwest of WLG. Elevated pMC values with abnormally high mass concentrations of TSP and WIRC were measured during a dust storm event.  相似文献   

18.
The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m2 calendered polyester needle felt; total surface area 4.2 m2) operated in Δp-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were separated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentration. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ∼5 μm (roughly the PM2.5 mass fraction). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10−5 to 10−6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m3 at the reference concentration of 10 g/m2.  相似文献   

19.
The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.  相似文献   

20.
Surfactants stabilise oil droplets in water, forming a dispersed oil–water emulsion. Treatment of oily effluents is a serious challenge owing to the high stability and colloidal nature of the oil droplets. In many applications, microbubbles are employed for separation purposes due to their buoyancy and increased surface area to volume ratio. This property has been exploited in the water treatment industry for separation in a process known as dissolved air flotation (DAF). Though practically efficient, the process is energy intensive operating at >5 bars and consequently consuming ∼90% of the total energy required in water purification plants. In this study microbubbles were produced by fluidic oscillation via a no-moving part diverter valve to cut down the energy consumption considerably. Microbubbles are applied for the separation of emulsified oil in a process known as microflotation. The mean bubble size generated by fluidic oscillation from the 50 μm pore diffuser was ∼100 μm, otherwise coarse bubbles were produced under steady flow. The effect of surfactant concentration on oil droplet size was investigated. It was found that oil droplet size varied inversely proportional to surfactant concentration. In addition, it was found that the oil removal efficiency also depends on the surfactant concentration. The maximum oil removal efficiency by Microflotation was found to be 91% under lowest surfactant concentration tested (0.3 wt%) whilst at highest surfactant concentration used (10 wt%); lowest recovery efficiency (19.4%) was recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号