首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
于全芝  殷雯  梁天骄 《物理学报》2011,60(5):52501-052501
本文采用高能粒子输运程序MCNPX 2.5.0,对中国散裂中子源(CSNS)靶站重要部件所使用的钨、SS316不锈钢与Al-6061等材料,由于中子与质子辐照所引起的损伤能量截面与原子离位截面进行了计算,对钨靶体、靶的不锈钢容器、慢化器与反射体的铝容器等部件的辐照损伤量——原子离位次数(displacement per atom,DPA)进行了计算与分析,并给出了质子束斑形状对靶体及靶容器DPA峰值的影响. 这些计算与分析对正在建设的中国散裂中子源靶站的设计及参数选择具有重要的实际意义. 关键词: 中国散裂中子源 损伤能量截面 原子离位截面 DPA  相似文献   

2.
《物理》1997,26(10):600-607
文章介绍了散裂中子源的物理基础、中子散射用散裂中子源对加速器的要求和靶系统的特点,阐述了利用散裂源,尤其是脉冲散裂源进行了散射实验的主要优点,并对我国建造散裂中子源的发展战略提出了建议。  相似文献   

3.
中国散裂中子源(CSNS)反角白光中子源束线主要由中子束窗、中子开关、中子准直器和真空管道等组成。为了保证CSNS反角白光中子源束线安全、稳定、可靠地运行,研制了基于EPICS(Experimental Physics and Industrial Control System)软件架构的控制系统。该系统主要由中子束窗、中子开关及中子准直器的运动控制系统、真空控制系统和控制室三部分组成,实现了对反角白光中子源束线主要设备的远程监测和控制。测试结果表明,该系统具有稳定可靠性高、人机交互友好的特点,很好地满足了反角白光中子源束线运行的需要。  相似文献   

4.
散裂中子源靶站谱仪的物理设计   总被引:1,自引:0,他引:1  
中子散射广泛地应用于凝聚态物质研究和应用的众多学科领域,是研究物质微观结构和动态的理想工具之一.散裂中子源能是新一代的加速器基脉冲中子源,能为中子散射提供高通量的脉冲中子.文章重点介绍了散裂中子源项目CSNS中靶站和谱仪的建设内容和设计工作的进展.  相似文献   

5.
中国散裂中子源一期工程于2018年通过国家验收,当前束流功率已经达到140 kW.为进一步提高靶站慢化器输出中子强度,已经提出中国散裂中子源二期500 kW功率升级计划.靶站关键部件长期受到高通量、高能量的粒子辐照,会产生较强的辐照损伤,影响着这些部件的使用寿命.本文首先使用PHITS3.33程序计算了钨、SS316不锈钢、6061铝合金3种材料的质子和中子原子离位截面以及氢、氦的产生截面,并分析了NRT (Norgett-Robinson-Torrens)模型和热平衡前原子复位修正(athermal recombination corrected,ARC)模型对材料离位损伤的影响.在此基础上结合中国散裂中子源二期靶站基线模型计算了靶站关键部件在500 kW的束流功率下运行5000 h产生的原子离位次数(displacement per atom,DPA)以及氢、氦的产额.计算结果表明,钨靶受辐照后产生的NRT-dpa,ARC-dpa,H和He产额最大值分别为8.01 dpa/y (1 y=2500 MW·h),2.39 dpa/y,5110 appm/y (atom parts pe...  相似文献   

6.
沈飞  梁泰然  殷雯  于全芝  左太森  姚泽恩  朱涛  梁天骄 《物理学报》2014,63(15):152801-152801
本文介绍了利用蒙特卡罗粒子输运程序MCNPX2.5.0进行中国散裂中子源多功能反射谱仪屏蔽设计的屏蔽需求、辐射源项、计算方法和设计结果等内容.在计算中考虑慢化器泄漏源项、中子导管损失源项等不同辐射源项,使用分步计算和源项角度偏移、源项能量偏移、几何分裂等多种减方差方法,在保证计算结果精度的同时提高计算速度.在谱仪束线传输段、第二中子开关、散射室等的屏蔽计算中,通过比较了不同条件下的所需屏蔽确定最终屏蔽设计,确保谱仪屏蔽外人员可到达区域的剂量低于安全限值2.5μSv/h.  相似文献   

7.
第一讲中子散射与散裂中子源   总被引:1,自引:0,他引:1  
中子散射是研究物质微观结构和动态的理想工具之一,广泛地应用于凝聚态物质研究和应用的众多学科领域.散裂中子源能是新一代的加速器基脉冲中子源,能为中子散射提供高通量的脉冲中子.文章简明地介绍了中子散射的特点和它作为物质结构和动态探针的优越性,以及散裂中子源的基本原理、发展状况和多学科的应用优势.我国计划建设的散裂中子源CSNS中,靶站将由多片钨靶、铍/铁反射体和铁/重混凝土生物屏蔽体组成.质子束功率100kW下,脉冲中子通量约为2.4×1016n/cm2/s.第一期将设计建造高通量粉末衍射仪、高分辨粉末衍射仪、小角散射仪、多功能反射仪和直接几何非弹性散射仪等五台典型的中子散射谱仪,以覆盖大部分的中子散射研究领域.  相似文献   

8.
王勋  张凤祁  陈伟  郭晓强  丁李利  罗尹虹 《物理学报》2019,68(5):52901-052901
由于缺少可用的散裂中子源,多年来我国在大气中子单粒子效应方面主要依靠模拟仿真和单能中子试验的方式开展研究.随着中国散裂中子源(CSNS)通过国家验收,基于CSNS开展大气中子单粒子效应研究成为可能.本文利用CSNS反角白光中子源开展多款静态随机存取存储器器件的中子单粒子效应试验,并与早期开展的高原大气试验结果进行对比,对CSNS在大气中子单粒子效应研究中的应用进行评估.结果表明,相同器件在CSNS反角白光中子源测得的单粒子翻转截面小于大气试验的结果,且不同器件的翻转截面与特征尺寸没有明显的单调关系.分析得到前者由于CSNS反角白光中子谱偏软;后者由于特征尺寸降低导致的临界电荷变小和灵敏体积变小对截面的贡献是竞争关系.针对截面偏小的问题,根据能谱差异分析了中子能量阈值对器件翻转截面的影响,发现能量阈值取12MeV进行计算时,器件在CSNS反角白光中子源和高原大气中子环境中能够得到较一致的截面.研究结果表明CSNS反角白光中子源能够用于加速大气中子单粒子效应试验.考虑到CSNS的运行功率正在逐步提高,且多条规划中的白光中子束线与大气中子能谱更为接近,预期未来CSNS将能更好地应用于大气中子单粒子效应研究.  相似文献   

9.
高能中子是指大于6MeV的中子。在组合装置上测量高能中子及铝材料和纯水泥圆柱壳体高能中子反照系数。组合装置由铁和慢化吸收材料组成,中子源是K-400中子发生器上的D-T聚变中子源。采用高阈能活化箔技术测量高能反照中子引起的绝对活化反应率。通过比较有无铝材料和纯水泥圆柱壳体的活化反应率测量结果,获得铝材料和纯水泥圆柱壳体的高能中子反照系数。  相似文献   

10.
张绍英  王芳卫 《物理》2005,34(10):774-774
散裂中子源是基于质子加速器产生的高能质子轰击重金属靶造成重金属原子散裂从而提供高脉冲中子通量的平台型大科学装置,散裂中子源在众多学科领域,特别是物质科学领域得到了广泛的应用,结合目前正在筹备阶段的北京散裂中子源(BSNS)项目的“第二届散裂中子源多学科应用研讨会”于2005年7月27日—29日在北京中国科学院物理研究所召开。  相似文献   

11.
In this article we describe the experimental results of a methane hydrate moderator as well as as mesitylene moderator operated at a temperature around 20K at the JESSICA (Jülich Experimental Spallation Target Set-up In COSY Area) experiment at the Jülich cooler synchrotron COSY. For the first time the cold neutron spectrum of a methane hydrate moderator was experimentally investigated. A comparison with a solid methane and an ice moderator atT = 20 K will be shown. MCNPX simulations with new developedS(α,β) scattering kernels will be compared with experimental data. The applicability of mesitylene and methane hydrate as cold moderators at spallation neutron sources will be discussed.  相似文献   

12.
The results of experimental and computer-modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (Joint Institute for Nuclear Research (JINR), Dubna) are presented. These studies are for the YuMO small-angle neutron scattering (SANS) spectrometer (IBR-2 beamline 4). The neutron spectra have been measured for two methane cold moderators for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators is shown at different wavelengths. Monte Carlo simulations have been carried out to determine the spectra for cold-methane and thermal moderators. The results of calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelengths are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done with both cold methane and a thermal moderator and the data were compared. The prospects for the use of a cold moderator for a SANS spectrometer at IBR-2 are discussed. The advantages of using the YuMO spectrometer with a thermal moderator with respect to the tested cold moderator are shown.  相似文献   

13.
The first criticality of a new KZ-202 neutron moderator on the IBR-2M reactor is achieved. The moderator consists of thermal and cold units. The former is a room-temperature comb water moderator; the latter, a moderator using a mixture of aromatic hydrocarbons (mesitylene and m-xylene). The cold moderator is filled with granules of this mixture, which are supplied by a cold helium flow, and operates at 30 K. The combination of two units in one moderator makes it possible to simultaneously take the thermal and cold neutron spectra for extracted-beam spectrometers. The arrangement of the thermal and cold moderators is numerically optimized by the Monte Carlo method. The use of the cold moderator allows a 13-fold increase in the cold neutron intensity from its surface.  相似文献   

14.
The method and results of an experiment to determine the cold neutron spectrum from solid mesitylene at moderator temperatures of 10–50 K are presented. This study was performed at the DIN-2PI spectrometer of the IBR-2 reactor. The objective of the study was to verify the system of constants used in the Monte Carlo simulation of cryogenic neutron moderators of the IBR-2M reactor and to obtain the cold neutron yield as a function of the moderator temperature. Satisfactory agreement between the experimental and calculated neutron spectra at a mesitylene temperature of 20 K has been obtained; the ratio of cold neutron intensities at 10 and 50 K is ∼1.8.  相似文献   

15.
The addition reaction of CH2OO?+?H2S → HSCH2OOH without and with catalyst X (X?=?H2O and (H2O)2) has been investigated by CCSD(T)-F12a/VTZ-F12//B3LYP/aug-cc-pVTZ method and canonical variational transition state theory with small curvature tunneling correction. When H2O was introduced in the CH2OO?+?H2S reaction, it not only acts as a catalyst for producing HSCH2OOH, but also plays as a reactant to forming HOCH2OOH. The formation channel of HSCH2OOH is more important than the formation channel of HOCH2OOH with its calculated rate constant larger by 11.0–43.2 times within the temperature 280–320?K. Then, (H2O)2 catalysed CH2OO?+?H2S → HSCH2OOH reaction has been taken into account with its rate lower 1.9–4.2 times than the reaction of CH2OO?+?H2S → HSCH2OOH with water. Also, CH2OO?+?H2S with H2O cannot compete with the CH2OO?+?H2S reaction without water. This is different from CH2OO?+?(H2O)2 reaction, which is about 4 orders of magnitude larger than the rate constant for CH2OO?+?H2O reaction. Such discrepancy is possible because C(CH2OO)···O(H2O) interaction has been enhanced more obviously by H2O as compared to that of C(CH2OO)···O(H2S) interaction.  相似文献   

16.
In this article, the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH without and with catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2) have been investigated theoretically at the CBS-QB3 level of theory. Our results show that the catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4 and CH3CH2COOH) shows different positive catalytic effects on reducing the apparent activation energy of the isomerisation reaction processes. Such different catalytic effects are mainly related to the number of hydrogen bonds and the size of the ring structure in X (X = H2O, (H2O)2 and (H2O)3)-assisted transition states, as well as different values of pKa for H2SO4, HCOOH and CH3CH2COOH. Very interesting is also the fact that H2SO4-assisted reaction is the most favourable for the hydrogen transfer from HN(NO2)2 to O2NNN(O)OH, due to the smallest pKa (?3.0) value of H2SO4 than H2O, HCOOH, H2SO4 and CH3CH2COOH, and also because of the largest ∠X???H???Y (the angle between the hydrogen bond donor and acceptor) involved in H2SO4-assisted transition state. Compared to the self-catalysis of the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH, the apparent activation energy of H2SO4-assisted channel also reduces by 9.6 kcal?mol?1, indicating that H2SO4 can affect the isomerisation of HN(NO2)2 to O2NNN(O)OH, most obvious among all the catalysts H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2.  相似文献   

17.
The addition reaction of CH2OO + H2O CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO···H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0–30 km altitude of the Earth's atmosphere. The results calculated within 0–5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%–77.26% and 0.04%–1.76%. Within 5–30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%–98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO···H2O + HCOOH is much slower.  相似文献   

18.
UV photoemission spectroscopy (UPS) with He 1 radiation ( = 21.2 eV) has been used to study the interaction of H2O and CH3OH with GaAs(110) surfaces prepared by cleavage in ultrahigh vacuum (UHV). For H2O two molecularly adsorbed phases can be distinguished at 300 K: at low coverage H2O is chemisorbed by its oxygen lone-pair orbital to the surface whereas for higher exposures a less perturbed species which resembles more a “physisorbed” or condensed H2O layer is found. At 180 K only the less perturbed species can be identified. Also CH3OH is chemisorbed molecularly at lower coverage with its oxygen end to the GaAs surface. For higher exposures two additional emission bands are observed which are interpreted as due to the methoxy radical CH3O resulting from a partial decomposition of CH3OH.  相似文献   

19.
The paper represents results on investigation of methane oxidation in supercritical water (SCW) in autoclave and flow conditions. In the autoclave, oxidation is realized under uniform heating of a CH4/O2/H2O and CH4/O2/N2 mixture to 873 K (the water and nitrogen density ≈ 3.2 mmol/cm3, the molar ratio [O2]0/[CH4]0 ≈ 1 and 2). In the composition of the oxidation products we detected H2 (only at [O2]0/[CH4]0 ≈ 1), CO and CO2. Based on time dependences of the reaction mixture temperature we have found that temperature of the onset of self-heating of the CH4/O2/H2O mixture is lower by 23 K than that of the CH4/O2/N2 mixture and grows as the CH4 concentration decreases. For comparable values of self-heating the average power in CH4 combustion in the H2O medium has appeared to be about two orders lower than in the N2 medium, which evidences inhibition of SCWmethane oxidation. In the boiler-reactor, oxidation was realized while mixing CH4 and O2 in counter-propagating jets in the cocurrent upflow of SCW at 673–874 K, 30 MPa (molar ratio [O2]/[CH4] ≈ 2.2). Unsteady combustion was observed only at a reaction mixture temperature of 678 K, which became steady at 700 K after a series of flashes. The carbon-bearing methane oxidation products in the boiler-reactor contain only CO2 (≥ 97.5%) and CO (≤ 2.5%mole).  相似文献   

20.
Two laminar, premixed, fuel-rich flames fueled by anisole-oxygen-argon mixtures with the same cold gas velocity and pressure were investigated by molecular-beam mass spectrometry at two synchrotron sources where tunable vacuum-ultraviolet radiation enables isomer-resolved photoionization. Decomposition of the very weak O–CH3 bond in anisole (C6H5OCH3) by unimolecular decomposition yields the resonantly-stabilized phenoxy radical (C6H5O). This key intermediate species opens reaction routes to five-membered ring species, such as cyclopentadiene (C5H6) and cyclopentadienyl radicals (C5H5). Anisole is often discussed as model compound for lignin to study the phenolic-carbon structure in this natural polymer. Measured temperature profiles and mole fractions of many combustion intermediates give detailed information on the flame structure. A very comprehensive reaction mechanism from the literature which includes a sub-scheme for anisole combustion is used for species modeling. Species with the highest measured mole fractions (on the order of 10?3–10?2) are CH3, CH4, C2H2, C2H4, C2H6, CH2O, C5H5 (cyclopentadienyl radical), C5H6 (cyclopentadiene), C6H6 (benzene), C6H5OH (phenol), and C6H5CHO (benzaldehyde). Some are formed in the first destruction steps of anisole, e.g., phenol and benzaldehyde, and their formation will be discussed and with regard to the modeling results. There are three major routes for the fuel destruction: (1) formation of benzaldehyde (C6H5CHO), (2) formation of phenol (C6H5OH), and (3) unimolecular decomposition of anisole to phenoxy (C6H5O) and CH3 radicals. In the experiment, the phenoxy radical could be measured directly. The phenoxy radical decomposes via a bicyclic structure into the soot precursor C5H5 and CO. Formation of larger oxygenated species was observed in both flames. One of them is guaiacol (2-methoxyphenol), which decomposes into fulvenone. The presented speciation data, which contain more than 60 species mole fraction profiles of each flame, give insights into the combustion kinetics of anisole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号