首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
How the structural changes take place in LiMnyFe1−yPO4-type cathode materials during lithium extraction/insertion is an important issue, especially on if they go through the single-phase reaction (i.e., solid solution reaction) or the two-phase reaction regions. Here we report the studies on the phase transition behaviors of a carbon coated Li1−xMn0.5Fe0.5PO4 (CLi1−xMn0.5Fe0.5PO4, 0.0  x  1.0) sample during the first charge using in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques. The combination of in situ XAS and XRD results clearly identify two two-phase coexistence regions at two voltage plateaus of 3.6 (Fe2+/Fe3+) and 4.2 V (Mn2+/Mn3+) and a narrow intermediate region which proceeds via single-phase reaction in between two two-phase regions. In addition, simultaneous redox reactions of Fe2+/Fe3+ and Mn2+/Mn3+ in the narrow single-phase region are reported and discussed for the first time.  相似文献   

2.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

3.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

4.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

5.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

6.
采用高温固相反应合成了M5-2xSmxNax(PO4)3F(M=Ca,Sr,Ba)荧光体,研究了其在真空紫外-可见光范围的发光特性。发现在Ca5(PO4)3F中Sm3+的电荷迁移带约在191 nm,在Sr5(PO4)3F中约在199 nm,而在Ba5(PO4)3F中约在204 nm,随着被取代碱土离子半径的增大电荷迁移能量逐渐减小。比较了M5(PO4)3F (M=Ca,Sr,Ba)中Sm3+和Eu3+电荷迁移能量的关系。  相似文献   

7.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

8.
The La1/3Zr2(PO4)3 NASICON-type compound (S.G. - neutron and X-ray diffraction experiments) is investigated by transmission electron microscopy (TEM) technique, selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM), in order to study locally the lanthanum distribution. An irreversible structural transformation is observed, without modification of the atomic content and cell size, as soon as the phase is illuminated by the electron beam. The progressive disappearance of the spots which do not check the R conditions on the SAED patterns is clearly shown along two zone axis, [001] and [100]. This transformation implies the displacement of the two La3+ cations in a preserved classical [Zr2(PO4)3] network. This interesting behavior is in good agreement with the La3+ ionic conductivity observed in La1/3Zr2(PO4)3 (4.09×10−7 S cm−1 at 700 °C). To our knowledge, this is the first time that a complete TEM study is done on a NASICON-type phase.  相似文献   

9.
A new complete solid solution of NASICON-type compounds between LiZr2(PO4)3 and La1/3Zr2(PO4)3 was evidenced with the general formula Li1−xLax/3Zr2(PO4)3 (0?x?1). These phases were synthesized by a complex polymerizable method and structurally characterized from Rietveld treatment of their X-ray and neutron powder diffraction data. This solid solution results from the substitution mechanism Li+→1/3La3++2/3□ leading to an increase of the vacancies number correlated to an increase of the La content. According to this substitution mechanism, the general formula can then be written Li1−xLax/32x/3Zr2(PO4)3 (0?x?1) in order to underline the correlation between the La content and the vacancies rate. For all the compounds, the structure is clearly related to that of the NASICON family with three crystallographic domains evidenced. For 0?x?0.5, all the members adopt at high temperature the typical NASICON-type structure (s.g. Rc), while at lower temperature, their structure distorts to a triclinic form (s.g. C 1¯), as observed for LiZr2(PO4)3 prepared above 1100 °C. Moreover, in this domain, the reversible transition is clearly soft and the transition temperature strongly depends of the x value. For 0.6?x?0.9, the compounds crystallize in a rhombohedral cell (s.g. R3¯), while for x=1, the phase La1/3Zr2(PO4)3 is obtained (s.g. P3¯, Z=6, a=8.7378(2) Å, c=23.2156(7) Å).This paper is devoted to the structure analysis of the series Li1−xLax/3Zr2(PO4)3 (0?x?1), from X-ray and neutron powder thermo diffraction and transmission electron microscopy (TEM) studies.  相似文献   

10.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

11.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

12.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

13.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

14.
Eu3+ luminescence is studied in apatite-related phosphate BiCa4(PO4)3O. Compositions of the formula Bi1−xEuxCa4(PO4)3O [x=0.05, 0.1, 0.3, 0.5, 0.8 and 1.0] are synthesized and they are isostructural with parent BiCa4(PO4)3O. Room temperature photoluminescence shows the various transitions 5D07FJ(=0,1,2) of Eu3+. The emission results of compositions with different Eu3+ content show the difference in site occupancy of Eu3+ in Bi1−xEuxCa4(PO4)3O. The intense 5D0-7F0 line at 574 nm for higher Eu3+ content is attributed to the presence of strongly covalent Eu-O bond that is possible by substituting Bi3+ in the Ca(2) site. This shows the preferential occupancy of Bi3+ in Ca(2) site and this has been attributed to the 6s2 lone pair electrons of Bi3+. This is further confirmed by comparing the emission results with La0.95Eu0.05Ca4(PO4)3O.  相似文献   

15.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

16.
The new oxyborate phosphors, Na3La9O3(BO3)8:Eu3+ (NLBO:Eu) and Na3La9O3(BO3)8:Tb3+ (NLBO:Tb) were prepared by solid-state reactions. The photoluminescence characteristics under UV excitation were investigated. The dominated emission of Eu3+ corresponding to the electric dipole transition 5D07F2 is located at 613 nm and bright green luminescence of NLBO:Tb attributed to the transition 5D47F5 is centered at 544 nm. The concentration dependence of the emission intensity showed that the optimum doping concentration of Eu and Tb is 30% and 10%, respectively.  相似文献   

17.
We report the preparation and stability of ScVO3.5+x and the novel phase InVO3.5+x. AVO3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 °C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO3.5+x structures following this pathway are 0.00x0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO3.54 and ScVO3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)Å, respectively with A3+/V4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state.  相似文献   

18.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

19.
Visible quantum cutting has been observed in GdPO4:Tb3+ upon Tb3+ 4f8–4f75d1 excitation and host excitation, and in Sr3Gd(PO4)3:Tb3+ upon Tb3+ 4f8–4f75d1 excitation. In the quantum cutting process, Tb3+ acts as a quantum cutter, which converts one short wavelength ultraviolet photon or one vacuum ultraviolet photon into more than one visible photon. The quantum cutting involves a cross-relaxation process between two neighboring Tb3+ and direct energy transfer between Tb3+ and Tb3+ or Tb3+ and Gd3+, depending on the excitation wavelength. The quantum efficiency variation of GdPO4:xTb3+ and Sr3Gd(PO4)3:xTb3+ shows a growing trend with increasing of Tb3+ content from x=1.5% to 13%.  相似文献   

20.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号