首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this work, RuS2 and RuO2 nanoparticles loaded chitosan (Chitosan was extracted from Lobsters shells of Persian Gulf, IR. Iran) was prepared and characterized via FE‐SEM, EDS and FT‐IR analysis. FESEM showed the formation of spherical nanoparticles in size ranging of 20 to 100 mm. Subsequently, the role of these new materials as curcumin drug carrier and in vitro release of curcumin in simulated body fluid (SBF) solution (pH 7.4) were studied. RuS2‐NPs‐CS than to RuO2‐NPs‐CS showed higher drug loading efficiency (>91%) and rapid (<90 min) curcumin drug release in SBF solution. Also, antibacterial activity of RuS2‐NPs‐CS and RuO2‐NPs‐CS in presens and absence of Rosemary extracts against the gram negative bacteria Pseudomonas aeruginosa (PAO 1) was evaluated by detection of minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC). MIC of RuS2‐NPs‐CS, RuO2‐NPs‐CS and Rosemary extracts on Pseudomonas aeruginosa strains were found to be 50 mg/ml, 50 mg/ml and 1250 mg/ml, respectively. The synergistic effect of these materials for inhibition of PAO 1 growth showed that mixture of RuS2‐NPs‐CS and Rosemary extracts has a better efficiency than to other mixture materials.  相似文献   

2.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   

3.
Materials having both magnetic and catalytic properties have shown great potential for practical applications. Here, a reduced graphene oxide/iron oxide/silver nanohybrid (rGO/Fe3O4/Ag NH) ternary material was prepared by green synthesis of Ag on pre‐synthesized rGO/Fe3O4. The as‐prepared rGO/Fe3O4/Ag NH was characterized using Fourier transform infrared spectroscopy, X‐ray diffractometry, Raman spectroscopy, vibrating sample magnetometry, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. rGO sheets were covered with Fe3O4 (8–16 nm) and Ag (18–40 nm) nanoparticles at high densities. The mass percentages were 13.47% (rGO), 62.52% (Fe3O4) and 24.01% (Ag). rGO/Fe3O4/Ag NH exhibited superparamagnetic behavior with high saturated magnetization (29 emu g−1 at 12 kOe), and efficiently catalyzed the reduction of 4‐nitrophenol (4‐NP) with a rate constant of 0.37 min−1, comparable to those of Ag‐based nanocatalysts. The half‐life of 4‐NP in the presence of rGO/Fe3O4/Ag NH was ca 1.86 min. rGO/Fe3O4/Ag NH could be magnetically collected and reused, and retained a high conversion efficiency of 94.4% after the fourth cycle. rGO/Fe3O4/Ag NH could potentially be used as a magnetically recoverable catalyst in the reduction of 4‐NP and environmental remediation.  相似文献   

4.
A magnetic inorganic–organic nanohybrid material (HPA/TPI‐Fe3O4 NPs) was produced as an efficient, highly recyclable and eco‐friendly catalyst for the one‐pot multi‐component synthesis of malonamide and 2,3,4,5‐tetrahydrobenzo[b ][1,4]oxazepine derivatives with high yields in short reaction times (25–35 min) in aqueous media at room temperature. The nanohybrid catalyst was prepared by the chemical anchoring of H6P2W18O62 onto the surface of modified Fe3O4 nanoparticles (NPs) with N ‐[3‐(triethoxysilyl)propyl]isonicotinamide (TPI) linker. The magnetic recoverable catalyst was easily recycled at least ten times without any loss of catalytic activity.  相似文献   

5.
First, attapulgite‐Fe3O4 magnetic filler (ATP‐Fe3O4) was prepared by using a chemical precipitation method. Subsequently, graphite oxide (GO) was prepared through Hummer method, and then reduced GO (RGO) was prepared through GO reduced by chitosan (CS). Finally, a series of WPU‐RGO/ATP‐Fe3O4/CS composites were prepared by introduced RGO/ATP‐Fe3O4/CS to waterborne polyurethane. The structure and properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis TGA, conductivity test, and tensile test. The experimental results indicated that thermal stability and tensile strength of nanocomposites were improved with the increase of the content of RGO/ATP‐Fe3O4/CS. Meanwhile, with the increase of the RGO/ATP‐Fe3O4/CS content, the electrical and magnetic properties of WPU‐RGO/ATP‐Fe3O4/CS composites were improved. When the content of RGO/ATP‐Fe3O4/CS was 8 wt%, the electrical conductivity and the saturation magnetic strength of WPU‐RGO/ATP‐Fe3O4/CS composites were 3.1 × 10?7 S·cm?1 and 1.38 emu/g, respectively. WPU‐RGO/ATP‐Fe3O4/CS composites have excellent electrical and magnetic properties.  相似文献   

6.
Among different metallic nanoparticles, sliver nanoparticles (Ag NPs) are one of the most essential and fascinating nanomaterials. Importantly, among the metal based nanoparticles, Ag NPs play a key role in various fields such as biomedicine, biosensors, catalysis, pharmaceuticals, nanoscience and nanotechnology, particularly in nanomedicine. A main concern about the chemical synthesis of Ag NPs is the production of hazardous chemicals and toxic wastes. To overcome this problem, many research studies have been carried out on the green synthesis of Ag NPs using green sources such as plant extracts, microorganisms and some biopolymers without formation of hazardous wastes. Among green sources, plants could be remarkably valuable to exploring the biosynthesis of Ag NPs. In this review, the green synthesis of Ag‐based nanocatalysts such as Ag NPs, AgPd NPs, Au?Ag NPs, Ag/AgPd NPs, Ag/Cu NPs, Ag@AgCl NPs, Au?Ag@AgCl nanocomposite, Ag?Cr‐AC nanocomposite and Ag NPs immobilized on various supports such as Natrolite zeolite, bone, ZnO, seashell, hazelnut shell, almond shell, SnO2, perlite, ZrO2, TiO2, α‐Al2O3, CeO2, reduced graphene oxide (rGO), h‐Fe2O3@SiO2, and Fe3O4 using numerous plant extracts as reducing and stabilizing agents in the absence of hazardous surfactant and capping agents has been focused. This work describes the state of the art and future challenges in the biosynthesis of Ag‐based nanocatalysts. The fact about the application of living plants in metal nanoparticle (MNPs) industry is that it is a more economical and efficient biosynthesis biosynthetic procedure. In addition, the catalytic activities of the synthesized, Ag‐based recyclable nanocatalysts using various plant extracts in several chemical reactions such as oxidation, reduction, coupling, cycloaddition, cyanation, epoxidation, hydration, degradation and hydrogenation reactions have bben extensively discussed.  相似文献   

7.
Based on the characteristics of polycations of chitosan and glucoamylase, which are oppositely charged, they were successfully alternatingly deposited onto the surface of aldehyde‐modified Fe3O4 nanoparticles by using a layer‐by‐layer ion exchange method to form magnetic carriers to construct multilayer films (designated as Fe3O4@(CS/GA)n). The (CS/GA)n film systems were endowed with the pH‐dependent properties of chitosan as well as the catalytic activity of glucoamylase. The changes in weight loss and surface chemistry, morphology, and magnetic sensitivity were monitored and verified by UV/Vis spectroscopy, zeta potential, TEM, and a vibrating sample magnetometer. Subsequently, the influence of the number of bilayers, storage stability, pH, temperature, and reusability of Fe3O4@(CS/GA)5 biocatalysts on catalytic activity were investigated. The results from characterization and determination remarkably indicate that Fe3O4@(CS/GA)5 presents excellent catalytic activity, storage stability, pH stability, and reusability in comparison with free enzyme. Fe3O4@(CS/GA)5 retained >60 % of its initial activity at 65 °C over 6 h; the optimum temperature and pH also increased to the ranges of 45–65 °C and 2.5–3.5, respectively, and only 27 % activity was lost after 10 cycles. This new strategy simplifies the reaction protocol and improves encapsulation efficiency and catalytic activity for new potential applications in biotechnology.  相似文献   

8.
In this study, we synthesized ofloxacin‐loaded MnFe2O4 nanoparticles (NPs) surface modified with chitosan (CS‐MnFe2O4) for prolonged antibiotic release in a controlled manner. It was found that the synthesized CS‐MnFe2O4 was spherical in shape with an average size of 30–50 nm, low aggregation, and good magnetic responsibility. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 86% of drug load and can release ofloxacin over a sustained period of 3 days. The release kinetics study reveals that the drug follows zero order kinetics and the mechanism of drug release is diffusion‐controlled type. These results indicated that CS‐MnFe2O4 NPs with pH‐sensitive properties can be used as candidates for intestinal targeted drug delivery through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach.  相似文献   

9.
In this study, two different nanostructural iron oxide films were prepared on two kinds of carbon steels (CS) with different contents of impurities via anodization in a mixture of aqueous ammonium fluoride solution and ethylene glycol, respectively, and apply to photoelectrochemical (PEC) water splitting. After annealing, iron oxide nanotubes (NTs) was coated on surface of lower purity CS and iron oxide nanoporous (NPs) was coated on surface of higher purity CS via scanning electron microscope. X‐ray diffraction pattern shows both of samples contain a major phase of α‐Fe2O3 and a slight phase of Fe3O4. Compared with NPs, NTs behaves better absorbance ability in visible spectra range via UV‐visible absorbance spectra. From PEC response, the iron oxide NTs showed higher water splitting performance (0.10 mA/cm2 at 0.4 V vs. Ag/AgCl) than NPs (0.04 mA/cm2 at 0.4 V vs. Ag/AgCl) due to better absorbance, higher car‐ rier concentration and low charge transfer resistance.  相似文献   

10.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

11.
We combine nanotechnology and chemical synthesis to create a novel multifunctional platinum drug delivery vehicle based on magnetic carbon nanotubes (multiwall carbon nanotubes/Fe3O4@poly(citric acid)/cis‐[(Pt(1,7‐phenanthroline)(DMSO)Cl2)]‐b‐poly(ethylene glycol) (MCNTs/FO@PC/Pt(II)‐b‐PEG)) for targeted cancer therapy. MCNTs/FO@PC/Pt(II)‐b‐PEG was conveniently prepared by conjugating cis‐[Pt(1,7‐phenanthroline)(DMSO)Cl2] complex to MCNTs/FO@PC‐b‐PEG via strong hydrogen‐bonding interactions. In comparison with free cisplatin and Pt(II) complex, MCNTs/FO@PC/Pt(II)‐b‐PEG shows higher solubility in aqueous solution and higher cytotoxicity towards human cervical cancer HeLa cells and human breast cancer MDA‐MB‐231 cells. In vitro release experiments revealed that the platinum drug‐loaded delivery system is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but susceptible to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of loaded drugs. Fluorescence microscopy studies revealed that this magnetic nanohybrid system possesses marked cell‐specific targeting in vitro in the presence of an external magnetic field. The results indicated that the prepared superparamagnetic MCNTs/FO@PC/Pt(II)‐b‐PEG nanohybrid system is a promising candidate for inhibiting the proliferation of cancer cells.  相似文献   

12.
Interaction of chitosan (CS) with Fe3O4, followed by embedding Cu nanoparticles (NPs) on the magnetic surface through adsorption of Cu2+, and its reduction to Cuo via NaBH4, offers a reusable efficient catalyst (Fe3O4/CS‐Cu NPs) that is employed in cross‐coupling reactions of aryl halides with phenols, which affords the corresponding diaryl ethers, with good to excellent yields. The catalyst is completely recoverable from the reaction mixture by using an external magnet. It can be reused four times, without significant loss in its catalytic activity.  相似文献   

13.
Efficient and reusable nanocatalysts fabricated via a facile assembly are highly desirable for the cost‐effective hydrogenation reduction. Inspired by a fishing process with a fishnet, multifunctional nanostructured catalysts are rationally designed to combine interesting features via the self‐redox assembly of Fe3O4‐Ag composites on reduced graphene oxide (rGO) (Fe3O4‐Ag/rGO). In detail, Fe3O4 nanoparticles (NPs) endow the ternary hybrids with superparamagnetism (21.42 emu g?1), facilitating catalysts to be separated from the reaction system. rGO could provide electron transfer pathways, enhancing catalytic activity. More interestingly, GO and Ag+ could behave as oxidants to oxidize Fe2+ for the in situ assembly of Fe3O4‐Ag/rGO without any addition of reductant/oxidant or organic solvents, and AgNPs endow the ternary hybrids with excellent catalytic behaviour. Meaningfully, the bioinspired process enables the ternary hybrids to possess more abundant micro?/nanopores, larger surface area, and more amorphization. They exhibit exceptional catalytic performance, and could be recycled with excellent activity by means of convenient magnetic separation (at least 7 times). Moreover, the ternary hybrids could degrade methylene blue under UV light due to different valence states of Fe in Fe3O4. Therefore, the proposed bioinspired assembly and structure design for hierarchical catalysts would pave a promising way to assemble other catalysts.  相似文献   

14.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

15.
Silver nanoparticles (Ag NPs) of improved thermal stability against long‐term aggregation were prepared using the polystyrene‐b‐poly(4‐vinylpyridine)‐b‐polystyrene (PS‐b‐P4VP‐b‐PS) triblock copolymer as a multidentate ligand. First, PS‐b‐P4VP‐b‐PS was synthesized by sequential reversible addition–fragmentation transfer (RAFT) polymerization of styrene and 4‐vinylpydine using a trithiocarbonate chain transfer agent (CTA). Then Ag NPs were obtained by in situ reduction of silver nitrate using PS‐b‐P4VP‐b‐PS as a multidentate ligand. The obtained Ag NPs were stable in solution for at least 24 h while being heated at 110°C. The effect of the molar ratio of N atoms of the P4VP chain segment and AgNO3 on the stability of Ag NPs was studied, and the results suggested that Ag NPs were very stable even if the molar ratio of N atoms of the P4VP chain segment and AgNO3 was very low. This method is promising to scale up the preparation of metal NPs with good dispersibility and thermal stability, which still remains challenging. To further improve its thermal stability, 1,4‐dibromobutane was used to chemically crosslink the P4VP chain segment in solution. However, the results proved that the crosslink method is infeasible to further improve the thermal stability of Ag NPs in this system.  相似文献   

16.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   

17.
In this paper, the synthesis of three types of porous materials (PMs) (porous Fe3O4, MIL-101 metal-organic framework (MOF), and MCM-41 mesoporous silica) by hydrothermal method was performed. The incorporation of Ag nanoparticles (Ag NPs) was carried out after the synthesis reaction of supports in MCM-41 and MIL-101 MOF. Ag core@ porous Fe3O4 core–shell system was prepared via a one-pot hydrothermal method. Ag-MIL-101 was obtained using Urtica dioica leaf extract as the green solvent and reducing agent. The antibacterial activity of Ag-PM nanocomposites (NCs) was investigated on both Gram-negative and Gram-positive bacteria. The size of the silver NPs was determined to be 12 and 30 nm in MCM-41 and MIL-101 MOF, respectively. The diameter of Ag core in Ag@Fe3O4 shell was ~135 nm. The antibacterial activity of Ag-PMs was in the order Ag-MCM-41 > Ag-MIL-101 > Ag core@Fe3O4 shell. The loading percent of Ag NPs in MCM-41 (84%) was more than that in MIL-101 (53%) and Fe3O4 (31%). The release of Ag+ ions from Ag-MCM-41, Ag-MIL-101, and Ag@Fe3O4 NCs was 46, 2, and 1 ppm, respectively. The release of the Ag+ ions and, consequently, the antibacterial activity of NCs depend on the uniform distribution, particles size, and the absence of aggregation of Ag NPs in PMs.  相似文献   

18.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

19.
We report on the fabrication of a surface‐enhanced Raman scattering (SERS) platform, comprised of a three‐dimensional (3D) porous eggshell membrane (ESM) scaffold decorated with Ag nanoparticles (NPs). Both native and treated ESM were used, where the treated ESM pore size and fiber crossing density was controlled by timed exposure to hydrogen peroxide (H2O2). Ag NPs were synthesized in situ by reduction of silver nitrate with ascorbic acid. Our results demonstrate that H2O2‐treated Ag‐ESM provides a more densely packed 3D network of active material, which leads to consistently higher SERS enhancement than untreated Ag‐ESM substrates.  相似文献   

20.
Facile strategy was developed for the fabrication of the monodisperse superparamagnetic pH‐sensitive single‐layer chitosan (CS) hollow microspheres with controllable structure. The carboxyl group‐functionalized polystyrene microspheres prepared by soap‐free emulsion polymerization were used as the templates. After the Fe3O4 nanoparticles were in situ formed onto the surface of the templates, the single‐layer CS was self‐assembled and cross‐linked with glutaraldehyde subsequently. Then, the magnetic single‐layer CS hollow microspheres were obtained after the templates were removed. It was found that the feeding ratio of the monomer acrylic acid in the soap‐free emulsion polymerization had played an important role on the particle size and surface carboxyl group content of the templates, which determined the particle size and shell thickness of the magnetic single‐layer CS hollow microspheres in the proposed strategy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号