首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
纳秒激光诱导石英光纤端面损伤特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
实验研究了石英光纤的纳秒激光诱导损伤行为.实验条件下全部为光纤端面损伤,按照损伤形貌可以分为坑状损伤、熔融损伤和溅射损伤三类.提出了光纤端面损伤的判断方法和损伤阈值的测试方法,通过线性拟合得出实验条件下石英传能光纤的零概率损伤功率密度阈值为3.85GW/cm2.总结了光纤端面损伤的过程,分析了激光诱导光纤端面损伤机理,指出光纤端面的杂质缺陷是造成光纤抗激光损伤能力下降的内因.因此,通过改善光纤端面质量还可较大程度提高光纤传输激光能量.实验发现光纤注入端面损伤点几乎全部发生在端面中心区 关键词: 激光诱导损伤 高峰值功率 光纤传能 损伤阈值  相似文献   

2.
赵兴海  胡建平  高杨  潘峰  马平 《物理学报》2010,59(6):3917-3923
实验研究并分析了调Q Nd:YAG 脉冲激光诱导光纤损伤特性.设计了在真空条件下全石英光纤传输1064 nm 脉冲激光实验.通过将激光注入光纤端面气压降低到10—100 Pa, 光纤端面击穿阈值提高到大气环境下的185 倍.结合光纤端面损伤形貌分析可知,光纤端面损伤主要是由于激光驻波场和烧蚀共同作用的结果,光纤端面或内部大量的缺陷降低了光纤抗激光损伤的能力.在真空条件下由于光纤端面光学击穿阈值的提高,激光诱导光纤损伤特性又表现出了另外一种损伤模式——光纤初始输入段损伤.它发生在光纤输入段附 关键词: 激光损伤 光束传输 真空 石英光纤  相似文献   

3.
李翠  史晋芳  邱荣  叶成  郭德成  蒋勇 《强激光与粒子束》2020,32(8):081004-1-081004-6
利用图像处理方法对比研究了单波长辐照和双波长激光同时辐照下熔石英光学元件的损伤增长阈值。通过实时采集损伤图像和靶面光斑能量空间分布,获取损伤增长发生位置对应的能量密度。针对3ω单独辐照、3ω和1ω同时辐照下熔石英元件损伤增长的实验数据,比较分析了基于图像处理方法和传统损伤增长阈值R-on-1测量方法(国标)所得结果的差异。结果表明:本文采用的图像处理方法在研究小口径非均匀光斑辐照下的熔石英光学元件损伤增长阈值时,能解决传统损伤阈值测试中将能量密度分布非均匀光斑等效为均匀分布的平顶光斑带来的计算误差问题,有助于降低损伤(增长)阈值测量中的光斑口径效应。  相似文献   

4.
随着激光器朝向大功率、高能量的方向发展,激光损伤阈值成为了衡量光学元件抗激光损伤能力的重要参数之一,因此,能否准确地测量出光学元件的激光损伤阈值成为研究的重点。而光学元件激光损伤阈值测试的关键是能否准确地判别光学元件是否发生激光损伤。为解决目前常见的损伤判别方法存在的精度低、识别时间长、适用材料范围窄、操作复杂等不足,提出了一种新的激光损伤的判别方法,即等离子体诊断法。以K9玻璃为例,搭建激光损伤阈值的测试平台,利用光纤光谱仪采集强激光辐照K9玻璃时所产生的激光等离子体闪光光谱,并对该光谱进行诊断分析,将该光谱中是否含有待测试光学元件材料中特征元素的光谱峰作为其是否收到激光损伤的标准。同时,对K9玻璃进行了激光损伤阈值的测试,并将测试结果与等离子体闪光法和显微镜法所测的激光损伤阈值进行了对比分析。实验表明,提出的等离子体诊断方法的判别精度高、速度快、测试装置结构简单,易实现在线测量,可以大大地提高光学元件激光损伤阈值测试工作的效率。  相似文献   

5.
激光光斑有效面积的准确测定   总被引:5,自引:2,他引:3       下载免费PDF全文
 从激光光斑有效面积的定义出发,采用CCD图像摄取技术,设计了一套激光光斑有效面积测量装置。在4种不同激光光斑能量分布和不同能量密度的情况下,用有效面积测量仪分别进行了实际测试验证。结果表明,该测量装置可以对任何能量非均匀分布的激光光斑的有效面积进行准确测试,有助于提高光学元件激光损伤阈值的测量精度。  相似文献   

6.
采用Nd:YAG激光对全石英多模光纤进行激光诱导损伤实验.结果全部为光纤端面损伤,主要是由光纤端面的杂质缺陷引起的.通过对激光损伤形貌的分析,明确光纤端面损伤机理.采用Matlab对光纤损伤端面进行图像处理,获得光纤端面损伤点的大小、出现频率和位置分布的统计特性.通过分析发现,光纤端面损伤点位置分布服从一定的规律,光纤前端面和后端面不同;光纤端面不同大小损伤点出现频率服从高斯分布;注入激光特性参数决定光纤前端面损伤特性,光纤传能特性以及光纤端面质量决定其后端面损伤特性.  相似文献   

7.
 采用连续CO2激光和真空等离子体相结合的方法对石英基片进行清洗。通过光学显微图、水接触角、透过率和损伤阈值测量分别表征了CO2激光和等离子体对真空硅脂蒸发物污染过的石英基片的清洗效果。研究表明:对于真空硅脂蒸发物污染后的石英基片,可以先采用低能量的CO2激光进行大面积清洗,再用真空等离子体进行精细清洗。光学显微图像表明:清洗后的基片表面的油珠被清除干净;水滴接触角由63°下降到4°;在400 nm附近,基片透过率由92.3%上升到93.3%;损伤阈值由3.77 J/cm2上升到5.09 J/cm2。  相似文献   

8.
 研究了15 MW峰值功率脉冲激光与600 μm芯径石英光纤耦合中存在的空气击穿现象。对聚焦区域的空气击穿现象进行了理论和实验研究,测得空气击穿阈值为0.79×109 W/cm2。测得固体介质的激光损伤阈值为2.12×109 W/cm2,与理论计算结果相符。提出了七合一光纤耦合器用于解决空气击穿的办法,实验测得7根光纤并束的耦合效率为67.21%。结果表明光纤耦合器可有效解决15 MW峰值功率脉冲激光与600 μm芯径石英光纤的耦合。  相似文献   

9.
高功率脉冲激光对阶跃折射率多模光纤损伤机理   总被引:1,自引:0,他引:1       下载免费PDF全文
 理论分析和模拟仿真研究了激光点火系统中光纤端面损伤、光纤初始输入段损伤和光纤内部损伤机理。结果显示:端面损伤主要是由光纤端面的杂质和缺陷引起;光纤初始输入段损伤是由光束的初次反射造成光纤局部激光能量密度增大引起的;光纤内部体损伤主要由于激光自聚焦效应引起损伤和光纤受到的意外应力产生微小碎片,吸收激光能量,引起光纤局部损伤。给出了激光点火系统中提高光纤损伤阈值的一般方法,主要包括光纤端面处理、设计合理的激光注入耦合装置。  相似文献   

10.
利用光学元件激光损伤测试平台,测试了355 nm皮秒激光辐照下熔石英光学元件的初始损伤及损伤增长情况,并通过荧光检测分析了损伤区缺陷。研究结果表明:皮秒激光较高的峰值功率导致熔石英损伤阈值较低,前表面损伤阈值为3.98 J/cm2,后表面损伤阈值为2.91 J/cm2;前后表面损伤形貌存在较大差异,后表面比前表面损伤程度轻且伴随体内丝状损伤;随脉冲数的增加后表面损伤直径增长缓慢,损伤深度呈线性增长;皮秒激光的动态自聚焦和自散焦导致熔石英体内损伤存在细丝和炸裂点重复的现象;与纳秒激光损伤相比,损伤区缺陷发生明显改变。  相似文献   

11.
随着大能量/高功率激光器的发展需求日益突出,光学薄膜的激光损伤阈值逐步成为激光器发展的瓶颈,受到国内外高能激光器研究领域的广泛关注。阐述了光学薄膜激光的损伤机理、激光损伤阈值测试平台及方法,结合自身研究成果,综述性分析了国内外光学薄膜抗激光损伤技术与手段研究的发展情况,主要包括离子束预处理、离子束与退火后处理、虚设保护层等;重点提出了磁过滤结合激光沉积的复合沉积技术,并建议加速推动无缺陷沉积的原子层沉积技术,为大幅提高光学薄膜抗激光损伤能力、满足当前需求提供了理论基础。  相似文献   

12.
受热效应、光学损伤与非线性效应等因素的限制,单纤的功率提高困难。因此通过光学元件将多束激光进行合束的光束合成技术应运而生。光谱合束方案具有结构简单,合束光束质量好等优点,逐渐成为了合束技术发展的主流。简要介绍了光纤激光光谱合束的几种常见合束方案,对比分析了几种合束技术的优缺点。对光谱合束中存在的光栅热畸变问题,从理论研究和实验研究两个方面进行了针对性的分析与讨论,并对光谱合束未来的发展趋势进行了展望。  相似文献   

13.
 随着光学元件损伤阈值测试研究工作的深入开展,有效、准确地测量和描绘它们的激光损伤阈值需要考虑多个因素。从不同口径的测试光束入手,采用R∶ 1测试方式,运用R∶ 1平均阈值的新概念,讨论了相同样品用不同测试口径测试其损伤阈值时,所得测试结果与测试口径的关系。研究表明,随着测试口径的增大,相同样品的损伤阈值逐渐减小,当测试口径增大到一定值时,损伤阈值趋于稳定。  相似文献   

14.
An Experiment to Demonstrate the Hyperfine Splitting of Atoms in a Lecture Hall The detection of laser induced fluorescence from a thermal atomic beam allows in a simple way for the observation of the hyperfine splitting of ground and excited Na-atoms. A suitable experimental setup is able to show in a lecture hall not only the atomic beam itself but also the consequences of electron and nuclear spin. The laser light used is transmitted from the laser in the laboratory into the lecture hall by a fiber glass cable. The experiment is able to show also the effects of optical pumping and, if additionally an external magnetic field is applied to the observation region, the Zeeman effect.  相似文献   

15.
类金刚石薄膜激光损伤阈值低,已经严重制约其在红外激光系统中的应用。基于非平衡磁控溅射技术,在硅基底上沉积类金刚石薄膜;采用离子束流后处理技术,用正交实验法确定影响处理效果的主要因素,对已沉积完成的DLC薄膜进行离子束轰击;在不同处理工艺下,观测薄膜样品的光学常数及拉曼光谱,最后进行了激光损伤测试。从测试结果可知,离子束流后处理参数:离子能量1000eV、放电电流30~40mA、轰击时间8min时,透射率由原来的60.65%提高到了65.98%;消光系数在900nm后明显降低,DLC薄膜的激光损伤阈值从0.69J/cm2提高到1.01J/cm2。  相似文献   

16.
To solve the problem of large error when measure the laser induced damage threshold of thin films in the case of Gaussian distribution beam induced damage thin films, optical system of flattop beam shaper which is capable of redistributing a beam with a Gaussian profile to a flattop profile was designed with optical design software ZEMAX. The Fermi-Dirac beam model was chosen as the distribution function of the flattop beam in this paper, the mapping formula of the input Gaussian beam and the output flattop beam was establish, the surface coefficient of aspheric was given. The energy conversion efficiency was 95.33% and the flattened degree was 93.66% in this design. The accuracy of measurement has been improved when measure the laser induced damage threshold of thin films by the flattop beam.  相似文献   

17.
提出一种基于光纤阵列的激光光斑时空分布测量方法,采用在多层石英平板上制作V型槽并层叠石英光纤阵列的方法,获得了具有较高抗激光损伤能力和空间分辨力的光纤阵列取样器,实现了激光光斑的空间分布取样。给出了光纤阵列的取样原理、取样器结构和大倍数光强衰减的设计。实验结果表明:光纤阵列抗激光损伤能力优于10 kW/cm2(50 s),系统空间分辨力优于3 mm,测量误差小于3%。  相似文献   

18.
对晶体光损伤阈值测量的一种新方法的研究   总被引:2,自引:1,他引:1  
盛芳  陈军  夏宗仁  洪治 《光学学报》2004,24(4):03-506
提出一种测量晶体光损伤阈值的新方法,即确定激光横向功率密度的空间分布,利用晶体的激光损伤斑点半径,直接计算出晶体光损伤阈值,并给出入射激光为高斯光束时晶体损伤阈值与其损斑半径的关系。以提拉法生长的掺镁铌酸锂(MgO:LiNbO3)晶体为研究对象,用该方法测量其损伤阈值,得到了定量结果且所得数据与文献已报道的规律相符。分析得出同样激光条件下.损斑半径越大的晶体其光损伤阈值越小的结论,指出该方法同样适用于其他晶体或非高斯光束条件下光损伤阈值的测量并对具体作法进行了讨论。该测量方法弥补了常用测量方法只能定性或半定量的不足,可用于晶体抗光损伤阈值的精确测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号