首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
为研究涡对融合过程的非线性现象,将模型简化,用数值模拟方法,通过求解LES的N-S方程,得出不同分离距离的涡对融合过程.根据不同截面位置的流线变化,通过流场的拓扑结构,分析相互耦合涡对融合的机理及分离距离对融合过程的影响,及不同强度比例的涡对融合过程对漩涡位置的控制作用.结果表明,融合距离随分离距离增大呈非线性增加趋势,涡对分离距离的增加使其对漩涡位置的控制作用减弱.  相似文献   

2.
Summary We made numerical experiments to study the merging dynamics of axisymmetric barotropic ringlike vortices using a quasi-geostrophic model in a β-plane. We want to explore the initial conditions and the physical parameters that cause the merging or that affect the merging rates of ringlike structures. The initial vortices have a ?realistic? shape,i.e., they are taken to simulate closely the horizontal structure of Gulf Stream rings. In the first set of experiments we change the initial conditions. The results agree with the classical solution that there is a critical initial separation distanced between the two vortices: for bigger merging distances the process cannot occur. The initial distance affects the merging rates and it determines the development of the lateral arms and the behaviour of the ?near-field? vortices. The latter form near the elongated arms of the merging vortices; sometimes the arms of the merged vortex become unstable and get detached from the central merged vorticity region to form dipolar structures with ?near-field? vortices. A second set of numerical simulations is done by changing the numerical model parameters. The results show that the merging is a nonlinear process very sensitive to the value of the nonlinear parameter, α, and that the β-effect does not alter appreciably the speed of merging but it affects the development of the arms.  相似文献   

3.
陶建军  胡向辉 《物理学报》2012,61(16):169202-169202
台风发生的必要条件是热带低层具有气旋式扰动, 从卫星云图和诊断分析看,许多低层涡旋中存在分立的云团或中尺度系统. 这些涡旋能否发展成为台风,取决于其中的中尺度波动是否发展集合组成密闭云带. 本文利用柱坐标下的两层动力模式,研究了低层弱涡旋中第二类条件不稳定 机 制驱动下的波动的发展和移动问题. 结果表明:热带弱涡旋中的低层基本流垂直切变 可以很大地加强波动的不稳定性; 波动的相速度和群速度都指向涡旋中心, 波动向中心传播,能量向中心频散. 实例和数值研究也都表明,低层涡旋中的中尺度扰动会迅速发展并且向 中心靠近,促使台风形成.  相似文献   

4.
Motion of Curves in Three Spatial Dimensions Using a Level Set Approach   总被引:2,自引:0,他引:2  
The level set method was originally designed for problems dealing with codimension one objects, where it has been extremely succesful, especially when topological changes in the interface, i.e., merging and breaking, occur. Attempts have been made to modify it to handle objects of higher codimension, such as vortex filaments, while preserving the merging and breaking property. We present numerical simulations of a level set based method for moving curves in R3, the model problem for higher codimension, that allows for topological changes. A vector valued level set function is used with the zero level set representing the curve. Our results show that this method can handle many types of curves moving under all types of geometrically based flows while automatically enforcing merging and breaking.  相似文献   

5.
High-power ultrasonic horns operating at low frequency are known to generate a cone-shaped cavitation bubble cloud beneath them. The exact physical processes resulting in the conical structure are still unclear mainly due to challenges associated with their visualization. Herein, we address the onset of the cavitation cloud by exploiting high-speed X-ray phase contrast imaging. It reveals that the cone formation is not immediate but results from a three-step phenomenology: (i) inception and oscillation of single bubbles, (ii) individual cloud formation under splitting or lens effects, and (iii) cloud merging leading to the formation of a bubble layer and, eventually, to the cone structure due to the radial pressure gradient on the horn tip.  相似文献   

6.
混合层流场中涡结构对流速度的特性   总被引:2,自引:0,他引:2       下载免费PDF全文
郭广明  刘洪  张斌  张忠阳  张庆兵 《物理学报》2016,65(7):74702-074702
基于大涡模拟和光线追踪方法, 对光线穿越流场后的光程分布与混合层流场中涡结构之间的关系进行了分析, 提出了一种基于涡核位置提取的涡结构瞬时对流速度定量计算方法, 并使用直接几何测量数据进行了验证. 通过对不同尺寸的涡结构、涡-涡配对及融合过程中的涡结构和强压缩性流场中涡结构瞬时对流速度的定量数值计算, 揭示了混合层流场中涡结构对流速度的特性: 对单个涡结构而言, 其瞬时对流速度具有脉动特性, 且脉动幅度随涡结构尺寸和流场压缩性而变化; 在涡-涡配对及融合过程中, 涡对中各个涡结构的瞬时对流速度都表现出类似正弦波动的特点. 针对混合层流场中涡结构对流速度的特性, 给出了其背后的物理原因.  相似文献   

7.
We present the point of view that both the vortices and the east-west zonal winds of Jupiter are confined to the planet's shallow weather layer and that their dynamics is completely described by the weakly dissipated, weakly forced quasigeostrophic (QG) equation. The weather layer is the region just below the tropopause and contains the visible clouds. The forcing mimics the overshoot of fluid from an underlying convection zone. The late-time solutions of the weakly forced and dissipated QG equations appear to be a small subset of the unforced and undissipated equations and are robust attractors. We illustrate QG vortex dynamics and attempt to explain the important features of Jupiter's Great Red Spot and other vortices: their shapes, locations with respect to the extrema of the east-west winds, stagnation points, numbers as a function of latitude, mergers, break-ups, cloud morphologies, internal distributions of vorticity, and signs of rotation with respect to both the planet's rotation and the shear of their surrounding east-west winds. Initial-value calculations in which the weather layer starts at rest produce oscillatory east-west winds. Like the Jovian winds, the winds are east-west asymmetric and have Karman vortex streets located only at the west-going jets. From numerical calculations we present an empirically derived energy criterion that determines whether QG vortices survive in oscillatory zonal flows with nonzero potential vorticity gradients. We show that a recent proof that claims that all QG vortices decay when embedded in oscillatory zonal flows is too restrictive in its assumptions. We show that the asymmetries in the cloud morphologies and numbers of cyclones and anticyclones can be accounted for by a QG model of the Jovian atmosphere, and we compare the QG model with competing models.  相似文献   

8.
圆柱近尾迹湍流涡结构的直接数值模拟   总被引:2,自引:1,他引:1  
本文运用谱元方法对圆柱尾流进行直接数值模拟。通过对中等Re数(1000)时的圆柱近尾迹湍流涡结构的演变系统细致的研究,经过长时间流动计算,用速度矢量及相应涡结构示意图显示主涡,二次涡结构的相互作用,显示整个尾迹涡结构在一个周期内的演变过程,获得了在实验中难以清楚观察到的近壁流动特征。本文得到圆柱近壁处二次涡形成有两种不同的机理,并总结出涡的合并所需要的条件。  相似文献   

9.
Based on a general model of nonlinear vortex dynamics in open thermodynamically nonequilibrium systems with bulk or surface mass losses, an analysis is presented of the mechanism of generation of violent atmospheric vortices (tornadoes, typhoons, cyclones) associated with the formation of deep cloud systems by intense condensation of water vapor from moist air cooled below the dew point. Simple particular solutions to the Navier-Stokes equations are found that describe both axisymmetric and nonaxisymmetric incompressible vortex motions involving radial and vertical flows with viscous dissipation vanishing identically everywhere except for a thin shear layer at the boundary of the condensation region. It is shown that the nonlinear convective and local Coriolis forces generated by radial inflow in the presence of a background vorticity due to a global Coriolis force (the Earth’s rotation) accelerate the solid-body rotation in the vortex core either exponentially or in a nonlinear regime of finite-time blow-up. Due to updrafts, such a vortex is characterized by a strong helicity. This mechanism explains a number of observed properties and characteristics of the structure and evolution of tornadoes and typhoons. Upper estimates are found for the kinetic energies of violent atmospheric vortices. It is shown that increase in rotational kinetic energy of atmospheric vortices with constant vortex-core radii is consistent with energy and momentum conservation, because radial inflow continually supplies the required amount of rotational kinetic energy drawn from the ambient atmosphere to an open system.  相似文献   

10.
We study surface modes of the condensate in the presence of a rotating thermal cloud in an axisymmetric trap. By considering collisions that transfer atoms between the condensate and the noncondensate, we find that m>0 modes, which rotate in the same sense as the thermal cloud, damp less strongly than m<0 modes, where m is the polarity of the excitation. We show that above a critical angular rotation frequency, equivalent to the Landau stability criterion, m>0 modes become dynamically unstable, leading to the possibility of vortex nucleation. We also generalize our stability analysis to treat the case where the stationary state of the condensate already possesses a single vortex.  相似文献   

11.
We investigate the lowest state of a Bose-Einstein condensate with an off-center vortex state that is confined in a rotating harmonic potential. Our results are consistent with the fact that any single off-center vortex is unstable. Furthermore, a vortex state located at the center of the cloud first becomes locally stable as the rotational frequency increases. Finally our study implies the existence of hysteresis effects.  相似文献   

12.
We study the role of surface modes in the process of vortex formation in harmonically trapped BEC. It is shown that the vortex nucleation and penetration to the inner part of the cloud occur at velocities slightly exceeding the surface mode critical velocity. Surface modes induce ripples of the order parameter; these ripples are then transformed into vortex-antivortex pairs. After this, vortices move to the inner part of the cloud, whereas antivortices go in the opposite direction  相似文献   

13.
A hybrid two-phase numerical methodology is used to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. The interaction of the particle cloud with the contact surface results in Rayleigh–Taylor instability, which grows in time and gives rise to a mixing layer where the detonation products mix with the air and afterburn. At early times, the ambient particles get engulfed into the detonation products and ignite. Subsequently, they catch up with the Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures cause transverse dispersion that results in the clustering of particles. Then, the particles leave the mixing layer and quench, yet preserve their hydrodynamic foot print. Preferential heating and combustion of particles occurs due to clustering. A higher initial mass loading in the ambient cloud results in larger clusters due to stronger/larger vortex rings around the hydrodynamic structures. A larger particle size results in the formation of fewer and degenerate clusters when the initial width of the cloud is larger. A theoretical model is used to predict the bubble amplitudes, and are in good accordance with the simulation results. Overall, this study has provided some useful insights on the explosive dispersal of dilute aluminum particle clouds and the gas dynamics of the flow field in the mixing layer.  相似文献   

14.
解小宁  刘晓东 《中国物理 B》2010,19(10):109201-109201
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.  相似文献   

15.
To simulate two-dimensional viscous incompressible flows based on a scheme of blob splitting and merging, we developed a vortex method and employed a fast multipole method to speed the computation of velocities. The diffusion of the vortex sheet induced at a solid wall by the no-slip boundary conditions is first modeled according to the analytical solution of Koumoutsakos and then converted into discrete blobs in the vicinity of the wall. To prevent the vorticity from entering the solid body, we introduce a concept residual circulation in a sense that only a partial circulation of the vortex sheet is diffused into the flow field; the rest remains at the wall. Blobs near the wall are thus avoided. Blobs near the wall that might cause large fluctuations in the strength of the vortex sheet are handled similarly. The solver thus developed requires no grid-based remeshing. We applied this solver to simulate the flow induced with an impulsively initiated circular cylinder; the results agree satisfactorily with those of previous experimental and numerical investigations.  相似文献   

16.
A microscopic model of warm clouds involving input of water droplets, dropletdroplet aggregation, droplet breakup, and precipitation is presented. Numerical simulations and analytical arguments indicate that after the stage of growth and just before precipitation sets in, a warm cloud is characterized by a droplet-size distribution which follows from an inverse power law as a function of the droplet size. When precipitation is taken into account, the above distribution is transformed into a distribution decaying exponentially with the droplet size, in agreement with field observations. It is suggested that the initiation of rainfall in a precipitating warm cloud can be viewed as an instability triggered by the presence of a power-law distribution.  相似文献   

17.
通过直接数值求解Navier-Stokes方程,研究了入流激励下可压缩剪切层中Kelvin-Helmholtz(KH)涡结构的响应特性,结果清晰地展示了KH涡的独特演化方式.基于流动可视化数据,采用两点相关性分析获得了流场拟序结构的空间尺寸和结构角分布.通过分析不同激励频率下涡结构的动态特性,揭示了入流激励下可压缩剪切层中KH涡结构的独特演化机理.研究结果表明,低频入流激励(f=5 k Hz)下KH涡尺寸在远场区域达到饱和后呈现锁频状态,KH涡量厚度稳定在12-14 mm之间;与自由剪切层涡结构通过配对合并的方式实现生长的机理不同,低频入流激励下剪切层的发展是通过中间涡核顺时针吞噬KH不稳定波诱导的一串外围小涡结构来实现生长.此外,针对高频激励(f=20 k Hz)下的剪切层流动,研究了涡结构特性和入流激励参数之间的定量关系,发现均匀分布涡结构的尺寸近似等于对流速度与入流激励频率之比.  相似文献   

18.
The microscopic scenario of vortex escape from a columnar defect under the influence of a transport current has been studied. For defect radii smaller than the superconducting coherence length the depinning process is shown to be a consequence of two subsequent topological electronic transitions in a trapped vortex core. The first transition at a critical current j L is associated with the opening of Fermi surface segments corresponding to the creation of a vortex-antivortex pair bound to the defect. The second transition at a certain current j d > j L is caused by merging of different Fermi surface segments, which accompanies the formation of a freely moving vortex.  相似文献   

19.
利用推广 Gross- Pitaevskii方程 ,分别研究了 (2 +1 )维时空和 3维空间的 Bose- Einstein凝聚体中涡旋的拓扑结构 .这一推广的方程能够被用于非均匀并且高度非线形的 Bose- Einstein凝聚系统 .利用Φ映射拓扑流理论 ,给出了基于序参数的涡旋速度场,以及该速度场的拓扑结构 .最后 ,仔细地探讨了这两种 Bose- Einstein系统中涡旋的各种分支条件.We studied the topological structure of vortex in the Bose-Einstein condensation with a generalized Gross-Pitaevskii equation in (2+1)-dimensional space-time and 3-dimensional space, respectively. Such equation can be used in discussing Bose-Einstein condensates in heterogeneous and highly nonlinear systems. An explicit expression for the vortex velocity field as a function of the order parameter field is derived in terms of the Φ -mapping theory, and the topological structure of ...  相似文献   

20.
We report observations of vortex formation by merging and interfering multiple (87)Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a single harmonic potential well is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated BECs. The BECs may either automatically merge together during their growth, or for high-energy barriers, the BECs can be merged together by barrier removal after their formation. Either process may instigate vortex formation in the resulting BEC, depending on the initially indeterminate relative phases of the condensates and the merging rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号