首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等式约束加权线性最小二乘问题的解法   总被引:1,自引:0,他引:1  
1 引言 在实际应用中常会提出解等式约束加权线性最小二乘问题 min||b-Ax||_M,(1.1) x∈C~n s.t.Bx=d, 其中B∈C~(p×n),A∈C~(q×n),d∈C~p,b∈C~q,M∈C~(q×q)为Hermite正定阵. 对于问题(1.1),目前已有多种解法,见文[1—3).本文将利用广义逆矩阵的知识,给出(1.1)的通解及迭代解法.本文中关于矩阵广义逆与投影算子(矩阵)的记号基本上与文[4]的相同.例如,A~+表示A的MP逆,P_L表示到子空间L上的正交投影算子,λ_(max)(MAY)表示矩阵M~(1/2)AY的最大特征值.我们还要用到广义BD逆的概念: 设A∈C~(n×n),L为C~n的子空间,则称A_(L)~(+)=P_L(AP_L+P_L⊥)~+为A关于L的广义BD逆.  相似文献   

2.
考虑等式 AQ-QT,=R (1) 其中Q是n×j列满秩矩阵,A是n×n矩阵,T_j为j×j矩阵。当||R||很小时,可以设想Q的列张成的空间是A的近似不变子空间。我们讨论T_j的特征值与A的特征值的关系。 当A和T_j均为对称时,Kahan(1967)(见[2]或[3])得到如下结论:设T_j的j个  相似文献   

3.
1引言设矩阵A∈C~(n×n),B∈C~(m×m),Q∈C~(n×m)为列满秩矩阵,令R=AQ-QB.当R的范数很小的时候,我们分析矩阵B的特征值对A的特征值的逼近性.当A,B都是Hermite阵时,上述问题已经被Kahan解决.近年来,对可对角化矩阵的情形,取得了一些新的成果.[4][5][6]中给出了几个范数不等式,并应用于矩阵特征值  相似文献   

4.
1 引 言 以C~(m×n)表所有m×n复元素矩阵的全体,对于给定的矩阵A∈C~(m×m),B∈C~(n×n)和C∈C~(m×n),矩阵方程 X-AXB=C (1.1)称为离散李雅普诺夫矩阵方程,它与控制理论有密切的关系。关于这类方程的解法,  相似文献   

5.
记J为一广义反射矩阵,HAJn×n为关于J的n阶Hermitian非自反矩阵的集合.本文考虑如下两个问题:问题Ⅰ给定X,B∈n×m,求A∈HAJn×n,使得‖AX-B‖=min.问题Ⅱ给定X∈n×m,B∈n×n,求A∈HAJn×n,使得XHAX=B.首先利用奇异值分解讨论问题Ⅰ的解的通式,然后利用广义奇异值分解得到了问题Ⅱ有解的充分必要条件和解的通式,最后给出问题Ⅰ和Ⅱ的逼近解的具体表达式.  相似文献   

6.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

7.
李仁仓 《计算数学》1989,11(3):239-247
本节将利用广义特征多项式的概念来研究广义特征值扰动界的上界估计.设A,B∈C~(n×n),首先定义一列算子:  相似文献   

8.
党诵诗 《计算数学》1988,10(4):444-445
对于[1]与[2]中提出的关于矩阵的最佳逼近问题,本文用一个简洁的方法,证明其主要结果. 1.问题及条件的转化 设X∈R~(n×k),A∈R~(n×n),λ_1,…λ_k为A的部分特征值,A=daig(λ_1…λ_k)以及  相似文献   

9.
实对称带状矩阵特征值反问题   总被引:1,自引:1,他引:0  
戴华 《计算数学》1988,10(1):107-111
用R~(n×m)表示所有n×m实矩阵的集合;OR~(n×n)表示所有n×n正交矩阵的集合;S_(n,r)表示所有带宽为2r+1的n阶实对称矩阵的集合;||·||_F表示矩阵的Frobenius范数,||·||表示向量的Euclid范数.任取A∈R~(n×m),满足AA~-A=A 的A~-∈R~(m×n)叫做A的内逆,满足AA_l~-A=A和(AA_l~-)~T=AA_l~-的A_l~-∈R~(m×n)叫做A的最小二乘广义逆,  相似文献   

10.
1 引言 对线性方程组 Ax=b, (1.1)这里A∈C~(n×n)是一个具有非零对角元的非奇异复矩阵,b∈C~n为n维向量,我们考虑A的如下分裂: A=D(I-L-U), (1.2)这里D=diag(A),L和U是D~(-1)A的严格下和严格上三角部分,表示单位矩阵. 不对称的逐次超松驰迭代方法(USSOR)[7]是按如下格式产生的迭代:  相似文献   

11.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

12.
@1 Definition 1 Let A=(α_(ij))∈C~(n×n),B=(b_(ij))∈C~(n×n),is nonsingular.The generalizedsingular values of A(relative to B)are following determinate nonnegative real numberswhen ||·||_2 denotes the Euclid vector norm,〈n〉={1,2,…,n}.Definition 2 Let A,B∈C~(n×n),if there exist λ∈C and x∈C~n\{0},such  相似文献   

13.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

14.
不变子空间与广义不变子空间(Ⅰ)存在与唯一性定理   总被引:2,自引:2,他引:0  
本文讨论与特征值和广义特征值问题相联系的某些子空间。在本文中,我们定义了矩阵对的“广义特征值方阵对”和“广义特征矩阵”,并由此建立了广义不变子空间的概念;建立了对应的子空间存在与唯一的充分必要条件;给出了广义不变子空间与G.W.Stewart定义的“收缩对”的关系。  相似文献   

15.
关于矩阵不变子空间的扰动界   总被引:1,自引:0,他引:1  
一 引言 矩阵不变子空间的扰动问题历来为数值分析工作者所重视,但现有的一些结果,如[1 5],通常都要求假设扰动为充分小,且所给出的界往往含有一些无法直接计算的量,如[5]中的Sep(B,C),此外,对于由根子空间低维子空间的直和构成的不变子空间的扰动很少有结果。 本文给出了比由根子空间直和构成的不变子空间更大的一类不变子空间的扰动界,  相似文献   

16.
N—范数,M—最小二乘解的扰动理论   总被引:2,自引:1,他引:1  
一 引言与预备知识 设A∈C~(mxn),M与N分别为m阶与n阶正定的Hermite矩阵。则存在唯一的矩阵X∈C~(n×m),满足  相似文献   

17.
§1 引言 给定线性方程组 Ax=b (1.1)其中A∈C~(n×n)是非奇异矩阵。若A的对角矩阵D为正定矩阵,则我们定义严格下三角矩阵L和严格上三角矩阵U使得  相似文献   

18.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

19.
§1 问题的提法R~(n×m)表示所有 n×m 阶实阵集合,(A)表示矩阵 A 的列空间,A~+表示 A 的 Moore-Penrose 广义逆,P_A=AA~+表示到(A)的正交投影核子;I_n 表示 n 阶单位阵,‖·‖_F 表示 Frobenius 范数。问题Ⅰ给定X,Y∈~(n×m),Λ=diag(λ_1,λ_2,…,λ_m)∈R~(m×m),找 A∈R~(n×m),使得问题Ⅱ给定 A~*∈R~(n×n),找∈S_E,使得‖A~*-‖_F=‖A~*-A‖_F,其中 S_E是问题Ⅰ的集合。本文讨论问题Ⅰ有解的充分与必要条件,且求出 S_E的表达式,同时给出的表达式。  相似文献   

20.
R~(n×n)表示 n 阶实矩阵组成的集合,R~n 表示 n 维实向量空间.本文中的矩阵假定都属于 R~(n×n).给定一个矩阵 A∈R~(n×n),A>0(A≥0)表示 A 是一个对称正定(非负定)矩阵;A 称为正(非负)矩阵,如 A 的元素都是正的(非负的).矩阵 A 称为稳定矩阵,如A 的特征值的实部都是负的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号