首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
若对x∈H,‖Tx‖~2≤‖T~2x‖‖x‖,则称T是仿正规算子.d_(AB)表示δ_(AB)或△_(AB),其中δ_(AB)和△_(AB)分别表示Banach空间B(H)上的广义导算子和初等算子,其定义为δ_(AB)X=AX-XB,△_(AB)X=AXB-X,X∈B(H).若A和B~*是仿正规算子,则可证d_(AB)是polaroid算子,f∈H(σ(d_(AB))),f(d_(AB))满足广义Weyl定理,f(d_(AB)~*)满足广义a-Weyl定理,其中H(σ(d_(AB)))表示在σ(d_(AB))的某邻域上解析的函数全体.  相似文献   

2.
令H为复数域C上的Hilbert空间,A为H上的标准算子代数.设δ:A→B(H)是线性映射.本文证明了,如果对任意A∈A成立δ(AA~*A)=δ(A)A~*A-Aδ(A~*)A+AA~*δ(A),则存在λ∈C及算子S,T∈B(H)满足S+T=λI,使得对所有的A∈A都有δ(A)=SA-AT.  相似文献   

3.
基于值域的稠密性和闭性,有界线性算子T的点谱和剩余谱可分别细分为σ_(p,1)(T),σ_(p,2)(T)和σ_(r,1)(T),σ_(r,2)(T).设H_1,H_2,H_3为无穷维复可分Hilbert空间,给定A∈B(H_1),B∈B(H_2),C∈B(H_3),结合分析方法与算子分块技巧给出了M_(D,E,F)的上述四种谱随D,E,F扰动的完全描述.  相似文献   

4.
设X是维数大于2的Banach空间,映射δ:B(X)→B(X)是2-局部Lie三重导子,则对所有A∈B(X)有δ(A)=[A,T]+φ(A),这里T∈B(X),φ是从B(X)到FI的齐次映射且满足对所有A,B∈B(X)有φ(A+B)=φ(A),其中B是交换子的和.  相似文献   

5.
令H是维数大于2的复Hilbert空间,A是H上自伴标准算子代数.对于给定的正整数κ≥1,H上算子A与B的κ-斜交换子递推地定义为_*[A,B]_κ=_*[A,_*[A,B]_(k-1)],其中_*[A,B]_0=B,_*[A,B]_1=AB-BA~*.设κ≥4,φ是A上的值域包含所有一秩投影的映射.本文证明了φ满足_*[φ(A),φ(B)]_κ=_*[A,B]_κ对任意A,B∈A都成立的充分必要条件是φ(A)=A对任意A∈A都成立,或φ(A)=-A对任意A∈A都成立,当κ是偶数时后一情形不出现.  相似文献   

6.
郭玉琴  安润玲 《数学学报》2018,61(4):631-640
设R是含非平凡幂等元P的素环,C∈R,C=PC.本文证明可加映射△:R→R在C可导,即△(AB)=△(A)B+A△(B),A,B∈R,AB=C当且仅当存在导子δ:R→R,使得△(A)=δ(A)+△(I)A,A∈R.没有I_1型中心直和项的von Neumann代数上的可导映射也有类似结论.利用该结论证明了,若非零算子C∈B(X),使得ran(C)或ker(C)在X中可补,则可加映射△:B(X)→B(X)在C可导当且仅当它是导子.特别地,证明了因子von Neumann代数上的可加映射在任意但固定的非零算子可导当且仅当它是导子.  相似文献   

7.
§1.定义与符号设H是可分的复Hilbert空间,B(H)表示H上全体有界算子的代数。对于A∈B(H),我们分别以R(A)、N(A)、{A}′及LatA表示它的值域、零空间、换位及不变子空间格。对于T,S∈B(H),如果有内射的稠值域的算子X,Y∈B(H),使得TX=XS,YT=SY,则说T与S是拟相似的。算子的拟相似性已经有丰富的内容。与拟相似概念有类似性的是算子互为拟仿射逆的概念[1],即:若T,S∈B(H),如果有内射的稠值域的算子X,Y∈B(H),使得TXS=X,SYT=Y,则说T与S互为拟仿射  相似文献   

8.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

9.
1引言及预备知识 设X,Y为Banach空间,B(X,Y)表示从X到Y中的有界线性算子组成的Banach空间.简记B(X,X)为B(X).对算子T∈B(X,Y),R(T)与N(T)分别表示T的值域和核空间.IP表示空间P上的恒等算子 定义1.1设T∈B(X,Y).若存在S∈B(Y,X),满足(1) TST=T;(2) STS=S,则称T广义可逆,S为T的一个广义逆,一般记为S=T+.  相似文献   

10.
本文从谱分解的角度讨论了Banach空间上可约化算子,谱算子和可分解算子间的关系,并证明了以下主要结果: 1.设T∈B(X)是完全谱可约化的可分解算子,则对每个F∈B,成立着 2.设T∈B(X),则T是谱算子当且仅当T是具有性质(B)的完全谱可约化的可分解算子。  相似文献   

11.
设A是不含交换中心投影的von Neumann代数,投影P∈A使得P=0, P=I.称可加映射δ:A→A在Ω∈A Lie可导,若δ([A,B])=[δ(A,δ(B)],■A,B∈A,AB=Ω.该文证明,若Ω∈A满足PΩ=Ω,则δ在ΩLie可导当且仅当存在导子τ:A→A和可加映射f:A→Z(A)使得δ(A)=τ(A)+f(A),■A∈A其中f([A,B)=0,■A,B∈A,AB=Ω.特别地,若A是因子von Neumann代数,Ω∈A满足ker(Ω)≠0或ran(Ω)≠H,则可加映射δ:A→A在ΩLie可导当且仅当δ有上述形式.  相似文献   

12.
正1引言设X为Banach空间,B(X)表示Banach空间X上有界线性算子的全体.设A∈B(X),则满足方程ABA=A的有界线性算子B∈B(X)称为A的{1}-逆,记作A~-;满足方程ABA=A,BAB=B的有界线性算子B∈B(X)称为A的自反广义逆或A的{1,2}-逆,通常记作A~+.若B∈B(X)满足下列方程  相似文献   

13.
有界线性算子的点谱和剩余谱分别可进-步细分为两类:σ_(p1),σ_(p2)和σ_(r1),σ_(r2).设H,K为无穷维可分的Hilbert空间,本文将对于给定的A ∈B (H),B ∈B(K),给出了缺项算子M_C=(AC/OB)关于分类后所得四种谱的扰动结果.  相似文献   

14.
<正>设H,K,H_1,H_2为Hilbert空间,B(H,K)为从H到K上的有界线性算子的全体.B(H,H)缩写为B(H).设A∈B(H,K).R(A),N(A)分别表示A的值域和零空间.若B∈B(K,H)满足方程ABA=A,则称B为A的{1}-逆,记作A~-.满足方程ABA=A,BAB=B的有界线性算子B称为A的广义逆,记作A~+.若B∈B(K,H)满足下列方程  相似文献   

15.
1引言 设H是Hilbert空间,B(H)是H上有界线性算子全体生成的Banach代数.设A∈B(H),用A*,R(A)和N(A)分别表示A的自伴算子,A的值域和A的核空间.用I(H)={[P∈B(H)):P=P2}表示H上所有幂等算子组成的集合.当P2=P=P*时,称幂等算子P为正交投影.设M是Hilbert空间H的闭子空间,用PM表示值域为M的正交投影.  相似文献   

16.
双曲域上的对数导数与Bloch函数   总被引:1,自引:0,他引:1  
肖杰 《数学学报》1991,34(6):770-778
设Ω是有限复平面C上的双曲型区域,λ_Ω(z)|dz|是其上的双曲度量;置δ_Ω(z)=dist(z,Ω),[1/δ_Ω(z)]|dz|称为Ω上的拟双曲度量.又记Ω上的Bloch函数全体为B(Ω).本文引进了Ω上的对数可导函数空间T(Ω)和拟对数可导函数空间QT(Ω),并讨论了它们的一些性质.对数导函数区别λ_Ω(z)与1/δ_Ω(z),以及此时候T(Ω)的几何特征;T(Ω)与B(Ω)之间的关系;QT(Ω)的渐近特征.  相似文献   

17.
本文所用的符号除特别说明外与[4]相同。关于算子的最佳非负逼近问题,首先由[1]提出,它的基本结果是(Ⅰ)对于任意算子 A=B+iC∈B(H),δ(A)=inf{r:B+(r~2-C~2)~(1/2)≥0r≥‖C‖}且 B+(δ(A)~2-C~2)~(1/2)是 A 的最佳非负逼近;(Ⅱ)若 A=B+iC∈B(H)是正规算子,则 B+是 A 的最佳非负逼近。文[2]、[4]刻划了 B_+是正规算子 A=B+iC 唯一最佳非负逼近的特征。正规算子集是半亚正规算子集的子类,那么对于半亚正规算子 A=B+  相似文献   

18.
设A为有单位且包含一非平凡幂等元的环,M为A双模.称δ:A→M为Lie可导映射(无可加或连续假设),若δ([A,B])=[δ(A),B]+[A,δ(B)],(?)A,B∈A.在一定条件下该文证明了Lie可导映射δ具有形式δ(A)=τ(A)+f(A),其中r:A→M是可加导子,f是从A到M的中心且满足f([A,B])=0,(?)A,B∈A的映射.由此刻画了因子von Neuamnn代数和套代数上的Lie可导映射.  相似文献   

19.
设A为包含非平凡幂等元且有单位的环(或代数),δ:A→A是可加(或线性)映射.称δ在零点Jordan可导,若δ(A)B+Aδ(B)+δ(B)A+Bδ(A)=0对任意满足AB+BA=0的A,B∈A成立.在一定条件下,证明了δ在零点Jordan可导当且仅当存在可加Jordan导子τ,使得δ(A)=τ(A)+δ(I)A对任意的A∈A成立.利用此结论,完全刻画了因子von Neumann代数上在零点Jordan可导的可加映射.此外,还刻画了一般von Neumann代数和C~*代数上在零点Jordan可导的有界线性映射.  相似文献   

20.
设A为包含非平凡幂等元且有单位的环(或代数),δ:A→A是可加(或线性)映射.称δ在零点Jordan可导,若δ(A)B+Aδ(B)+δ(B)A+Bδ(A)=0对任意满足AB+BA=0的A,B∈A成立.在一定条件下,证明了δ在零点Jordan可导当且仪当存在可加Jordan导子τ,使得δ(A)=τ(A)+δ(I)A对任意的A∈A成立.利用此结论,完全刻画了因子von Neumann代数上在零点Jordan可导的可加映射.此外,还刻画了一般von Neumann代数和C*代数上在零点Jordan可导的有界线性映射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号