首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis and differential scanning calorimetry(DSC). The thermal decomposition reaction kinetics was studied by means of different heating rate DSC. The results show that the apparent activation energy and pre-exponential factor of the exothermic decomposition reaction of DHDNEMn obtained by Kissinger's method are 162.3 kJ/mol and 1011.8 s^-1, respectively. The kinetic equation of major exothermic decomposition reaction of DHDNEMn is dα/dT= 10^118/β 2/5(1-α)[-ln(1-α)[-ln(1-α)]^3/5 exp(-1.623×10^5/RT). The entropy of activation(△S^≠), enthalpy of activation(△H^≠) and free energy of activation(A△G^≠) of the first thermal decomposition are -24.49 J·mol^-1·K^-1, 185.20 kJ/mol and 199.29 kJ/mol(T=575.5 K), respectively. The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) are 562.9 and 580.0 K, respectively. The above-mentioned information on the thermal behavior is quite useful for analyzing and evaluating the stability and thermal safety of DHDNEMn.  相似文献   

2.
Low-temperature heat capacities of 2-chloro-N,N-dimethylnicotinamide were precisely measured with a high-precision automated adiabatic calorimeter over the temperature range from 82 K to 380 K. The compound was observed to melt at (342.15±0.04) K. The molar enthalpy AfusionHm, and entropy of fusion, △fusionSm, as well as the chemical purity of the compound were determined to be (21387±7) J·mol^-1, (62.51±0.01) J·mol^-1·K^-1, (0.9946±0.0005) mass fraction, respectively. The extrapolated melting temperature for the pure compound obtained from fractional melting experiments was (342.25±0.024) K. The thermodynamic function data relative to the reference temperature 298.15 K were calculated based on the heat capacity measurements in the temperature range from 82 to 325 K. The thermal behavior of the compound was also investigated by different scanning calorimetry.  相似文献   

3.
邸友莹张剑  谭志诚 《中国化学》2007,25(10):1423-1429
A coordination compound of erbium perchlorate with L-α-glutamic acid, [Er2(Glu)2(H2O)6](ClO4)4·6H2O(s), was synthesized. By chemical analysis, elemental analysis, FTIR, TG/DTG, and comparison with relevant literatures, its chemical composition and structure were established. The mechanism of thermal decomposition of the complex was deduced on the basis of the TG/DTG analysis. Low-temperature heat capacities were measured by a precision automated adiabatic calorimeter from 78 to 318 K. An endothermic peak in the heat capacity curve was observed over the temperature region of 290-318 K, which was ascribed to a solid-to-solid phase transition. The temperature Ttrans, the enthalpy △transHm and the entropy △transSm of the phase transition for the compound were determined to be: (308.73±0.45) K, (10.49±0.05) kJ·mol^-1 and (33.9±0.2) J·K^-1·mol^-1. Polynomial equation of heat capacities as a function of the temperature in the region of 78-290 K was fitted by the least square method. Standard molar enthalpies of dissolution of the mixture [2ErCl3·6H2O(s)+2L-Glu(s)+6NaClO4·H2O(s)] and the mixture {[Er2(Glu)2(H2O)6](ClO4)4·6H2O(s)+6NaCl(s)} in 100 mL of 2 mol·dm^-3 HClO4 as calorimetric solvent, and {2HClO4(1)} in the solution A' at T=298.15 K were measured to be, △dHm,1=(31.552±0.026) kJ·mol^-1, △dHm,2 = (41.302±0.034) kJ·mol^-1, and △dHm,3 = ( 14.986 ± 0.064) kJ·mol^-1, respectively. In accordance with Hess law, the standard molar enthalpy of formation of the complex was determined as △fHm-=-(7551.0±2.4) kJ·mol^-1 by using an isoperibol solution-reaction calorimeter and designing a thermochemical cycle.  相似文献   

4.
Low-temperature heat capacities of octahydrated barium dihydroxide, Ba(OH)2·8H2O(s), were measured by a precision automated adiabatic calorimeter in the temperature range from T=78 to 370 K. An obvious endothermic process took place in the temperature range of 345-356 K. The peak in the heat capacity curve was correspondent to the sum of both the fusion and the first thermal decomposition or dehydration. The experimental molar heat capacifies in the temperature ranges of 78-345 K and 356-369 K were fitted to two polynomials. The peak temperature, molar enthalpy and entropy of the phase change have been determined to be (355.007±0.076) K, (73.506±0.011) kJ·ol^-1 and (207.140±0.074) J·K^-1·mol^-1, respectively, by three series of repeated heat capacity measurements in the temperature region of 298-370 K. The thermodynamic functions, (Hr-H298.15 k )and (Sr-S298.15k), of the compound have been calculated by the numerical integral of the two heat-eapacity polynomials. In addition, DSC and TG-DTG techniques were used for the further study of thermal behavior of the compound. The latent heat of the phase change became into a value larger than that of the normal compound because the melfing process of the compound must be accompanied by the thermal decomposition or dehydration of 71-120.  相似文献   

5.
A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.  相似文献   

6.
高氯酸三碳酰肼合镉快速热解反应动力学的研究   总被引:1,自引:0,他引:1  
孙远华  张同来  张建国  乔小晶  杨利  郑红 《中国化学》2005,23(12):1607-1610
The Temperature-jump/FTIR (T-jump/FTIR) spectroscopy was introduced to resolve the decomposition kinetics parameters of [Cd(CHZ)3](ClO4)2 (CdCP) at high temperature following very rapid heating process. The increase in the absorbances during the flash pyrolysis of CdCP yielded the kinetics parameters in the range of 360-430 ℃ at 0.1 MPa Ar atmosphere: Ea=28.6 kJ/mol and In A= 17. The kinetics parameters of the exothermic decomposition reaction were also determined by using DSC method. The value of Ea determined by T-jump/FTIR spectroscopy is smaller than that by Kissinger method and Ozawa-Doyle method, which makes these values qualitatively consistent with other energetic materials. The T-jump/FTIR spectroscopy might be resembled as the surface of explosion reaction very closely. In addition, the decomposition kinetics of evolution of the major four individual gas products was also resolved by T-jump/FTIR spectroscopy, which might be essential for detailed combustion modeling of solid energetic materials.  相似文献   

7.
The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG), and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience. The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages. Nitric ester evaporates and decomposes in the first stage, and nitrocellulose and centralite II(C2) decompose in the second stage. The mass loss, the DTG peak points, and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG. There is only one obvious exothermic peak in the DSC curves under the different pressures. With the increase in the furnace pressure, the peak temperature decreases, and the decomposition heat increases. With the increase in the content of TEGDN, the decomposition heat decreases at 0.1 MPa and rises at high pressure. The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures. The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as: dα/dt=1021.59(1-α)3e-2.60×104/T. The reaction mechanism of the process can be classified as chemical reaction. The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K, respectively. ΔS≠, ΔH≠, and ΔG≠ of the decomposition reaction are 163.57 J·mol^-1·K^-1, 209.54 kJ·mol^-1, and 133.55 kJ·mol^-1, respectively.  相似文献   

8.
The thermal behavior, mechanism and kinetic parameters of the exothermic first-stage decomposition of the title compound in a temperature-programmed mode were investigated by means of DSC, TG-DTG and IR. The reaction mechanism was proposed. The kinetic model function in differential form, apparent activation energy(Ea) and pre-exponential factor(A) of this reaction are (3/2)(1-a)[-ln(1-a)]1/3, 185.52 kJ/mol and 1017.78 s-1, respectively. The critical temperature of the thermal explosion of the compound is 201.30 ℃. The values of ΔS≠, ΔH≠ and ΔG≠ of this reaction are 72.46 J/(mol · K), 175.1 kJ/mol and 141.50 kJ/mol, respectively.  相似文献   

9.
Low-temperature heat capacities of the solid compound NaCuAsO4·1.5H2O(s)were measured using a precision automated adiabatic calorimeter over a temperature range of T=78 K to T=390 K.A dehydration process occurred in the temperature range of T=368-374 K.The peak temperature of the dehydration was observed to be TD=(371.828±0.146)K by means of the heat-capacity measurement.The molar enthalpy and entropy of the dehydration were ΔDHm=(18.571±0.142)kJ/mol and ΔDSm=(49.946±0.415)J/(K·mol),respectively.The experimental values of heat capacities for the solid(Ⅰ)and the solid-liquid mixture(Ⅱ)were respectively fitted to two polynomial equations by the least square method.The smoothed values of the molar heat capacities and the fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated at an interval of 5 K.  相似文献   

10.
TG-DTG technique and Harcourt-Esson integrated equation were used to study the dehydration process of zinc phosphate tetrahydrate α-Zn3(PO4)2·4H2O nanoparticle and its thermal decomposition kinetics. The results show that there are three stages of dehydration between 300 and 800 K during the thermal decomposition of α-Zn3(PO4)2·4H2O nanoparticle. The first stage is controlled by chemical reaction with an activation energy of 69.48 kJ·mol^-1 and a pre-exponential factor of 1.77×10^6 s^-1. The second is controlled by nucleation and growth with an activation energy of 78.74 kJ·mol^-1 and a pre-exponential factor of 5.86×10^9 s^-1. The third is controlled by nucleation and growth with an activation energy of 141.5 kJ·mol^-1 and a pre-exponential factor of 1.01×10^12 s^-1. The kinetic compensative effects not only exist in Arrhenius equation but also in Harcourt-Esson equation. Activation energy E is dependent on both the decomposition fraction α and temperature T.  相似文献   

11.
用精密自动绝热量热计测定了4-硝基苯甲醇(4-NBA)在78 ~ 396 K温区的摩尔热容。其熔化温度、摩尔熔化焓及摩尔熔化熵分别为:(336.426 ± 0.088) K, (20.97 ± 0.13) kJ×mol-1 和 (57.24 ± 0.36) J×K-1×mol-1.根据热力学函数关系式,从热容值计算出了该物质在80 ~ 400 K温区的热力学函数值 [HT - H298.15 K] 和[ST - S298.15 K]. 用精密氧弹燃烧量热计测定了该物质在T=298.15 K的恒容燃烧能和标准摩尔燃烧焓分别为 (C7H7NO3, s)=- ( 3549.11 ± 1.47 ) kJ×mol-1 和 (C7H7NO3, s)=- ( 3548.49 ± 1.47 ) kJ×mol-1. 利用标准摩尔燃烧焓和其他辅助热力学数据通过盖斯热化学循环, 计算出了该物质标准摩尔生成焓 (C7H7NO3, s)=- (206.49 ± 2.52) kJ×mol-1 .  相似文献   

12.
Introduction N-Guanylurea dinitramide (GUDN) is a new ener-getic oxidizer with higher energy and lower sensitivity. Its crystal density is 1.755 g·cm-3. The detonation velocity is about 8210 m·s-1. Its specific impulse and pressure exponent are 213.1 s and 0.73, respectively. It has the potential for possible use as an energy ingredient of propellants and explosives from the point of view of the above-mentioned high performance. Its preparation,1 properties2 and hygroscopocity2 have been …  相似文献   

13.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N‐N‐bis[N‐(2,2,2‐tri‐nitroethyl)‐N‐nitro]ethylenediamine in a temperature‐programmed mode have been investigated by means of differential scanning calorimetry (DSC). The results show that kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of this reaction are 3(1 ‐α)2/3, 203.67 kJ·mol?1 and 1020.61s?1, respectively. The critical temperature of thermal explosion of the compound is 182.2 °C. The values of ΔS ΔH and ΔG of this reaction are 143.3 J·mol?1·K?1, 199.5 kJ·mol?1 and 135.5 kJ·mol?1, respectively.  相似文献   

14.
The product from reaction of lanthanum chloride heptahydrate with salicylic acid and thioproline, [La(Hsal)2•(tch)]•2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimatric analysis and chemistry analysis. The standard molar enthalpies of solution of LaCl3•7H2O (s), [2C7H6O3 (s)], C4H7NO2S (s) and [La(Hsal)2•(tch)]•2H2O (s) in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO) and 3 mol•L-1 HCl were determined by calorimetry to be [LaCl3•7H2O (s), 298.15 K]=(-102.36±0.66) kJ•mol-1, [2C7H6O3 (s), 298.15 K]=(26.65±0.22) kJ•mol-1, [C4H7NO2S (s), 298.15 K]=(-21.79±0.35) kJ•mol-1 and {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-41.10±0.32) kJ•mol-1. The enthalpy change of the reaction LaCl3•7H2O (s)+2C7H6O3 (s)+C4H7NO2S (s)=[La(Hsal)2•(tch)]•2H2O (s)+3HCl (g)+5H2O (l) (Eq. 1) was determined to be =(41.02±0.85) kJ•mol-1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of [La(Hsal)2•(tch)]•2H2O (s) was estimated to be {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-3017.0±3.7) kJ•mol-1.  相似文献   

15.
在无水乙醇中, 使低水合氯化稀土 (RE = Ho, Er, Tm, Yb, Lu) 与吡咯烷二硫代氨基甲酸铵 (APDC)和1,10-菲咯啉 (o–phen•H2O) 反应, 制得其三元固态配合物. 用化学分析和元素分析确定它的组成为RE(C5H8NS2)3(C12H8N2) (RE = Ho, Er, Tm, Yb, Lu). IR光谱说明RE3+ 分别与3个PDC的6个硫原子双齿配位, 同时与o–phen的2个氮原子双齿配位, 配位数为8. 用精密转动弹热量计测定了它们的恒容燃烧热△cU分别为(-16788.46 ± 7.74), (-15434.53 ± 8.28), (-15287.80 ± 7.31), (-15200.50 ± 7.22)和(-15254.34 ± 6.61) kJ•mol-1; 并计算了它们的标准摩尔燃烧焓△cHmθ和标准摩尔生成焓△fHmθ分别为( -16803.95 ± 7.74), (-15450.02 ± 8.28), (-15303.29 ± 9.28), (-15215.99 ± 7.22), (-15269.83 ± 6.61) kJ • mol-1和 (-1115.42 ± 8.94), (-2477.80 ± 9.15), (-2619.95 ± 10.44), (-2670.17 ± 8.22), (-2650.06 ± 8.49) kJ•mol-1.  相似文献   

16.
IntroductionZincisanessentialtraceelementtothelife .Manydiseasesarousedfromadeficiencyofzincelementhavere ceivedconsiderableattention .L α Aminoacidsarebasicunitsofproteins .L α Trytophanisoneoftheeightspeciesofaminoacidsindispensableforlife ,whichhastobeab sorbedfromfoodbecauseitcannotbesynthesizedinthehumanbody .InviewofthecomplexesofL α trytophanandessentialelementsasaddictiveswidelyusedinsuchfieldsasfoodstuff,medicineandcosmetic ,1 3theyhaveabroadenprospectforapplications .Briefly ,ab…  相似文献   

17.
A new compound, 2‐(dinitromethylene)‐1,3‐diazacyclopentane (DNDZ), was prepared by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) with 1,2‐diaminoethane in N‐methylpyrrolidone (NMP). Thermal decomposition of DNDZ was studied under non‐isothermal conditions by DSC, TG/DTG methods, and the enthalpy, apparent activation energy and pre‐exponential factor of the exothermic decomposition reaction were obtained as 317.13 kJ·mol?1, 269.7 kJ·mol?1 and 1024.51 s?1, respectively. The critical temperature of thermal explosion was 261.04°C. Specific heat capacity of DNDZ was determined with a micro‐DSC method and a theoretical calculation method, and the molar heat capacity was 205.41 J·mol?1·K?1 at 298.15 K. Adiabatic time‐to‐explosion was calculated to be a certain value between 263–289 s. DNDZ has higher thermal stability than FOX‐7.  相似文献   

18.
以苏糖酸与碳酸氢钾反应制得苏糖酸钾K(C4H7O5)·H2O,通过红外光谱、热重、化学分析及元素分析等对其进行了表征。用精密自动绝热热量计测量了该化合物在78K-395K温区的摩尔热容。实验结果表明,该化合物存在明显的脱水转变,其脱水浓度、摩尔脱水焓以及摩尔脱水熵分别为:(380.524 ± 0.093) K,(19.655 ± 0.012) kJ/mol 和 (51.618 ± 0.051) J/(K·mol)。将78K-362K和382K-395K两个温区的实验热容值用最小二乘法拟合,得到了两个表示热容随温度变化的多项式方程。以RBC-II型恒容转动弹热量计测定目标化合物的恒容燃烧能为(-1749.71 ± 0.91) kJ/mol,计算得到其标准摩尔生成焓为(-1292.56 ± 1.06) kJ/mol。  相似文献   

19.
Low‐temperature heat capacities of gramine (C11H14N2) were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 401 K. A polynomial equation of heat capacities as a function of temperature was fitted by least squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at 5 K intervals. The constant‐volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen‐bomb combustion calorimeter as ΔcU=−(35336.7±13.9) J·g−1. The standard molar enthalpy of combustion of the compound was determined to be ΔcHm0=−(6163.2±2.4) kJ·mol−1, according to the definition of combustion enthalpy. Finally, the standard molar enthalpy of formation of the compound was calculated to be Δ;cHm0=−(166.2±2.8) kJ·mol−1 in accordance with Hess law.  相似文献   

20.
The thermal behavior of 4,6‐bis‐(5‐amino‐3‐nitro‐1,2,4‐triazol‐1‐yl)‐5‐nitropyrimidine (BANTNP) was studied under a non‐isothermal condition by DSC, PDSC and TG/DTG methods. The kinetic parameters (Ea and A) of the exothermic decomposition reaction are 304.52 kJ·mol?1 and 1024.47 s?1 at 0.1 MPa, 272.52 kJ·mol?1 and 1021.76 s?1 at 5.0 MPa, respectively. The kinetic equation at 0.1 MPa can be expressed as: dα/dT=1025.3(1?α)3/4exp(?3.8044×104/T)/β The critical temperature of thermal explosion is 588.28 K. The specific heat capacity of BANTNP was determined with a Micro‐DSC method, and the standard molar specific heat capacity is 397.54 J·mol?1·K?1 at 298.15 K. The adiabatic time‐to‐explosion of BANTNP was calculated to be 11.75 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号