首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Four novel cage compounds were designed by introducing –N(NO2)CH2–, –N(NO2)O–, –N(NO2)N(NO2)–, and –N=N– linkages into the RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) skeleton. Their molecular geometry, electronic structure, heat of formation, and detonation properties were systematically studied using density functional theory (DFT). In addition, the most stable dimers of the four compounds were constructed to further investigate their stability based on intermolecular interactions. It is found that the unconventional CH⋯O interactions would be the dominant driving force when the title compounds form crystals. Compared with the traditional explosives, the compounds with higher detonation properties and lower impact sensitivity will be considered as promising candidates for high energy density compounds. Our results indicate that our innovative design strategy is extremely useful for developing novel energetic compounds.  相似文献   

2.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

3.
In this study, based on two model nitramine compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5, 7-tetrazocine (HMX), two series of new energetic molecules were designed by replacing carbon atoms in the ring with different amounts of boron atoms, their structures and performances were investigated theoretically by the density functional theory method. The results showed that the boron replacement could affect the molecular shape and electronic structure of RDX and HMX greatly, and then would do harm to the main performance like the heat of formation, density, and sensitivity. However, the compound RDX-B2 is an exception; it was formed by replacing two boron atoms into the system of RDX and has the symmetric boat-like structure. Its oxygen balance (4.9%), density (1.91 g/cm3), detonation velocity (8.85 km/s), and detonation pressure (36.9 GPa) are all higher than RDX. Furthermore, RDX-B2 has shorter and stronger N NO2 bonds than RDX, making it possesses lower sensitivity (45 cm) and better thermal stability (the bond dissociation energy for the N NO2 bond is 204.7 kJ/mol) than RDX. Besides, RDX-B1 and HMX-B4 also have good overall performance; these three new molecules may be regarded as a new potential candidate for high energy density compounds.  相似文献   

4.
The structure, band gap, thermodynamic properties and detonation properties of methyl, amino, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides are explored using density functional theory at the B3LYP/aug-cc-pVDZ level. It is found that the NH2 or CH3 group substitution for the acidic proton at the N4 position of trinitropyrazole-2-oxide (P20) decreases the heat of detonation and crystal density. The density (2.20–2.50 g/cm3), detonation velocity (10.20–10.92 km/s), and detonation pressure (52.30–59.84 GPa) of the title compounds are higher compared with 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and octanitrocubane (ONC).  相似文献   

5.
A series of bridged triazolo[4,5-d]pyridazine based energetic materials were optimized at B3LYP/6-311G(d, p) level of density functional theory (DFT), and their detonation properties and sensitivities were calculated. The results show that the  NN bridge/ N3 group were beneficial to improve values of heats of formation while  NN bridge/ C(NO2)3 group can improve detonation properties remarkably. In view of the sensitivities, compound F2 possesses the minimum values of impact sensitivity which reveals that  NHNH bridge/ C(NO2)3 group will decrease the stability of the designed compounds. Take both of detonation properties and sensitivities into consideration, compounds C8, E7, E8, F8 were screened as candidates of potential energetic materials since these compounds possess similar detonation properties and sensitivities values to those of RDX. All the calculated results were except to shine lights on the design and synthesis of novel high energy density materials.  相似文献   

6.
We designed a series of energetic compounds based on the CL-20 molecular skeleton, and the properties including molecular geometric structures, electronic structures, density, heat of formation, detonation performances, and impact sensitivity were evaluated using density functional theory (DFT). The results indicate that five molecules have higher density values than that of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX; 1.91 g/cm3) and A4 has a larger density value (2.07 g/cm3) than that of CL-20 (2.04 g/cm3). In addition, most of the molecules have better detonation performances and stability than those of CL-20, with A4 showing much greater detonation velocity (9.93 km/s) and pressure (47.32 GPa) than those of CL-20 with a h50 value of 14.02 cm. Taking both excellent detonation performance and low sensitivity into consideration, all seven compounds except for A3 and A5 are considered as potential energetic compounds. These theoretically calculated results would be conducive to the design and synthesis of novel nitramine energetic compounds.  相似文献   

7.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

8.
A sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.74 mg/l at 25 degrees C (95% confidence interval, n=3). The performance of the method was then compared to results obtained from existing high-performance liquid chromatography methods including US Environmental Protection Agency method 8330.  相似文献   

9.
Density functional theory (DFT) calculations at the B3LYP/aug‐cc‐pVDZ level have been carried out to study the geometry and electronic structures, stability, sensitivity and band gap of the possible isomers of aminonitropyrazole‐2‐oxides. Kamlet‐Jacob equations were used to determine the performance properties of model compounds. The performance properties of model compounds P5, P18, P20, P21, P22, and P23 are higher compared with 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20) and octanitrocubane (ONC). The heat of explosion, density, detonation velocity and detonation pressure are related to the number and positions of NO2 and NH2 groups in pyrazole‐2‐oxide. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
Thermal decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20) and its oxa-analogs containing four and three nitramine fragments, in the gas phase and in solution predominantly follows the first order kinetics, whereas in the solid phase it proceeds with acceleration. Replacement of the two nitramine groups in the five-membered cycles of the molecule CL-20 by oxa groups practically does not affect the rate of decomposition of oxanitroderivatives in the solid phase. Substitution of the nitro group in one of oxa-nitroderivatives by R = H, NO, COCH3, CH2N(NO2)CH3 differently affects the rate of decomposition. For R = H the rate of decomposition increases; when R = COCH3, CH2N(NO2)CH3, it decreases; for R = NO, the rate of decomposition remains constant. For the studied compounds the activation parameters of thermal decomposition are determined in the solution, the gas phase, and the solid phase. In general, the reactivity of nitramines depends on the length of the weakest bond N-NO2, which is affected by the conformation of the nitro group.  相似文献   

11.
In order to better understand the role of binder content, molecular dynamics (MD) simulations were performed to study the interfacial interactions, sensitivity and mechanical properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) based polymer-bonded explosives (PBXs) with fluorine rubber F2311. The binding energy between CL-20/TNT co-crystal (1 0 0) surface and F2311, pair correlation function, the maximum bond length of the N–NO2 trigger bond, and the mechanical properties of the PBXs were reported. From the calculated binding energy, it was found that binding energy increases with increasing F2311 content. Additionally, according to the results of pair correlation function, it turns out that H–O hydrogen bonds and H–F hydrogen bonds exist between F2311 molecules and the molecules in CL-20/TNT. The length of trigger bond in CL-20/TNT were adopted as theoretical criterion of sensitivity. The maximum bond length of the N–NO2 trigger bond decreased very significantly when the F2311 content increased from 0 to 9.2%. This indicated increasing F2311 content can reduce sensitivity and improve thermal stability. However, the maximum bond length of the N–NO2 trigger bond remained essentially unchanged when the F2311 content was further increased. Additionally, the calculated mechanical data indicated that with the increase in F2311 content, the rigidity of CL-20/TNT based PBXs was decrease, the toughness was improved.  相似文献   

12.
《结构化学》2020,39(7):1261-1265
The azide oxiranes were studied at the CCSD(T)/cc-PVDZ//MP2/cc-PVDZ level in this paper. The sublimation enthalpies and heats of formation both in gas phase and solid state were calculated. The thermodynamics stability was predicted by using the bond dissociation energy and characteristic height, through which all title compounds are confirmed to be more stable than hexanitrohexaazaisowurtzitane(CL-20) and A, B_1 and D are less sensitive than hexahydro-1,3,5,-trinitro-1,3,5-triazine(RDX). Furthermore, the detonation property was measured by the specific impulse. The detonation performance of the title compounds is comparable to that of RDX. Our results can provide basic information for the molecular design of novel high-energy-density compounds.  相似文献   

13.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The zero-order reaction rates (specific rate constants) of isothermal decomposition at 120 °C of plastic bonded explosives (PBXs) were measured by means of the Czech vacuum stability test, STABIL. The PBXs are based on 1,3,5-trinitro-1,3,5-triazinane (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole (BCHMX), and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, ε-CL-20) with 13 wt% of the Formex P1 type matrix, i.e., a matrix of the explosive with pentaerythritol tetranitrate (PETN) bound by 13 wt% of a mixture of 25 wt% of styrene–butadiene rubber and 75 wt% of an oily material. Dependencies were found between the specific rate constants mentioned and the detonation velocities of PBXs, and consequently between these constants and the impact and electric spark sensitivities of pure explosive fillers, i.e., RDX, HMX, HNIW, BCHMX, and PETN. It is stated that the higher impact or electric spark sensitivity of their pure explosive fillers corresponds to the higher thermal reactivity of the given PBXs.  相似文献   

15.
A new family of energetic caged compounds was designed by introducing -NH- into the CL-20 skeleton and their energetic properties and impact sensitivity were investigated by using density functional theory. The results indicate that favorable substitution positions of the amine groups in the skeleton is helpful for increasing the heats of formation. Most of the seven compounds have high crystal densities above 1.9 g/cm3. Five compounds have the predominant detonation properties over CL-20. The derivatives with one NH2 group have lower impact sensitivity than those with two NH2 groups. Taking the detonation performance and impact sensitivity into consideration, four compounds may be selected as the potential candidates of high energy density compounds.  相似文献   

16.
Comparative theoretical studies of energetic azo s-triazines   总被引:1,自引:0,他引:1  
In this work, the properties of the synthesized high-nitrogen compounds 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (TAAT) and 4,4',6,6'-tetra(azido)hydrazo-1,3,5-triazine (TAHT), and a set of designed bridged triazines with similar bridges were studied theoretically to facilitate further developments for the molecules of interests. The gas-phase heats of formation were predicted based on the isodesmic reactions by using the DFT-B3LYP/AUG-cc-PVDZ method. The estimates of the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. Calculation results show that the method gives a good estimation for enthalpies, in comparison with available experimental data for TAAT and TAHT. The crystal density has been computed using molecular packing calculations. The calculated detonation velocities and detonation pressures indicate that -NF(2), -NO(2), -N═N-, and -N═N(O)- groups are effective structural units for improving the detonation performance of the bridged triazines. The synthesized TAAT and TAHT are not preferred energetic materials due to their inferior detonation performance. The p→π conjugation effect between the triazine rings and bridges makes the molecule stable as a whole. The electrostatic behavior of the bridged triazines is characterized by an anomalous surface potential imbalance when incorporating the strongly electron-withdrawing -NF(2) and -NO(2) groups into the molecule. An analysis of the bond dissociation energies shows that all these derivatives have good thermal stability over RDX and HMX, and the -NH-NH- bridge is more helpful for improving the stability than -N═N(O)- and -N═N- bridges. Considering the detonation performance and thermal stability, three bridged triazines may be considered as the potential candidates of high-energy density materials (HEDMs).  相似文献   

17.
The thermal decomposition of explosives: pentaerythrol tetranitrate (PETN), 2,4,6-trinitrotoluene(TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitroamine (RDX) and their two-component mixtures with 40% of lead compounds [PbO, Pb3O4, Pb(NO3)2] were performed. The simple method of determination of stability changes in the mixtures described above, in comparison with pure explosives was presented. The lead oxides accelerated significantly the thermal decomposition of explosives. Pb(NO3)2 acts as a catalyst in the mixture containing TNT degradation, but not in a case of PETN and RDX. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
《结构化学》2020,39(5):849-854
A series of derivatives of pyridazine were designed through substituting hydrogens on the pyridazine ring with nitro groups. To explore the thermal stability of the title molecules, heats of formation, bond dissociation energies, and bond orders were calculated at the B3PW91/6-311+G(d,p) level. To confirm the potential usage as high energy density compounds, the detonation pressure and detonation velocity were predicted by using the empirical Kamlet-Jacobs(K-J) equation. Based on our calculated results, both thermal and kinetic stabilities of the title molecules are confirmed with good detonation characters. Especially, 3,4,5-trinitropyridazide and 3,4,6-trinitropyridazide represent excellent detonation parameters better than 1,3,5-trinitro-1,3,5-triazacyclohexane(RDX) and are screened out as potential high energy density compounds.  相似文献   

19.
A new family of asymmetric oxadiazole based energetic compounds were designed. Their electronic structures, heats of formation, detonation properties and stabilities were investigated by density functional theory. The results show that all the designed compounds have high positive heats of formation ranging from 115.4 to 2122.2 kJ mol−1. −N− bridge/−N3 groups played an important role in improving heats of formation while −O− bridge/−NF2 group made more contributions to the densities of the designed compounds. Detonation properties show that some compounds have equal or higher detonation velocities than RDX, while some other have higher detonation pressures than RDX. All the designed compounds have better impact sensitivities than those of RDX and HMX and meet the criterion of thermal stability. Finally, some of the compounds were screened as the candidates of high energy density compounds with superior detonation properties and stabilities to that of HMX and their electronic properties were investigated.  相似文献   

20.
A new class of nitroguanidyl‐functionalized nitrogen‐rich materials derived from 1,3,5‐triazine and 1,2,4,5‐tetrazine was synthesized through reactions between N‐nitroso‐N′‐alkylguanidines and the hydrazine derivatives of 1,3,5‐triazine or 1,2,4,5‐tetrazine. These compounds were fully characterized using multinuclear NMR and IR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). The heats of formation for all compounds were calculated with Gaussian 03 and then combined with experimental densities to determine the detonation pressures (P) and velocities (Dv) of the energetic materials. Interestingly, some of the compounds exhibit an energetic performance (P and Dv) comparable to that of RDX, thus holding promise for application as energetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号