首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In order to study the properties of new energetic compounds formed by introducing nitroazoles into 2,4,6-trinitrobezene, the density, heat of formation and detonation properties of 36 nitro-1-(2,4,6-trinitrobenzene)-1H-azoles energetic compounds are studied by density functional theory, and their stability and melting point are predicted. The results show that most of target compounds have good detonation properties and stability. And it is found that nitro-1-(2,4,6-Trinitrophenyl)-1H-pyrrole compounds and nitro-1-(2,4,6-trinitrop-enyl)-1H-Imidazole compounds have good thermal stability, and their weakest bond is C NO2 bond, the bond dissociation energy of the weakest bond is 222–238 kJ mol−1 and close to 2,4,6-trinitrotoluene (235 kJ mol−1). The weakest bond of the other compounds may be the C NO2 bond or the N N bond, and the strength of the N N bond is related to the nitro group on azole ring.  相似文献   

2.
Polymeric Si/C/O/N xerogels, with the idealized polymer network structure comprising [Si O Si(NCN)3]n moieties, were prepared by reactions of hexachlorodisiloxane (Cl3Si O SiCl3) with bis(trimethylsilyl)carbodiimide (Me3Si NCN SiMe3, BTSC). NMR and FTIR spectra indicate the existence of ‐NCN‐ and Si O Si‐ units in the xerogels and also in the ceramic materials obtained upon pyrolysis. The feasibility of this reaction protocol was confirmed on the molecular level by the deliberate synthesis of the macrocyclic compound [SiPh2 O SiPh2(NCN)]2, the crystal structure and spectroscopic data of which are reported. The influence of pyridine as a catalyst for the cross‐linking reaction was studied. The degree of cross‐linking increased within the polymers with the addition of pyridine. It was shown by the reaction of hexachlorodisiloxane with excess pyridine that the latter appears to activate only one out of the two ‐SiCl3 moieties under formation of hexacoordinated silicon compounds. The crystal structure of Cl3Si O SiCl3(pyridine)2 is presented. Quantum chemical calculations are in support of this adduct being a potential intermediate in the pyridine catalyzed sol–gel process. The ceramic yield after pyrolysis of the Si/C/O/N‐xerogels at 1000 °C, which reaches values up to 50%, was found to depend on the aging protocol (time, temperature), whereas no correlation was found with the amount of pyridine added for xerogel synthesis. The Si/C/N/O‐ceramics obtained after pyrolysis at 1000 °C under NH3 are completely amorphous. Chemically they have to be considered as hybrids between an ideal [SiOSi(NCN)3]n network and glass‐like Si2N2O. The products are mesoporous with closed pores and a broad pore size distribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A new family of asymmetric oxadiazole based energetic compounds were designed. Their electronic structures, heats of formation, detonation properties and stabilities were investigated by density functional theory. The results show that all the designed compounds have high positive heats of formation ranging from 115.4 to 2122.2 kJ mol−1. −N− bridge/−N3 groups played an important role in improving heats of formation while −O− bridge/−NF2 group made more contributions to the densities of the designed compounds. Detonation properties show that some compounds have equal or higher detonation velocities than RDX, while some other have higher detonation pressures than RDX. All the designed compounds have better impact sensitivities than those of RDX and HMX and meet the criterion of thermal stability. Finally, some of the compounds were screened as the candidates of high energy density compounds with superior detonation properties and stabilities to that of HMX and their electronic properties were investigated.  相似文献   

4.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

5.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

6.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of 1,2,3,4-tetrazine-1,3-dioxide derivatives with different substituents and bridge groups. It is found that the groups –NO2, –C(NO2)3, and –N=N– play a very important role in increasing the HOFs of the derivatives. The effects of the substituents on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and HOMO–LUMO gaps are coupled to those of different substituents and bridges. The calculated detonation velocities and pressures indicate that the group –NO2, –NF2, –ONO2, –C(NO2)3, or –NH– is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds indicates that incorporating the groups –NO2, –NF2, –ONO2, –C(NO2)3, and –N=N– into parent ring decreases their thermal stability. Considering the detonation performance and thermal stability, 18 compounds may be considered as the target compounds holding the greatest potential for synthesis and use as high-energy density compounds. Among them, the oxygen balances of four compounds are equal to zero. These results provide basic information for the molecular design of the novel high-energy compounds.  相似文献   

7.
The molecular structure, heats of formation, energetic properties, strain energy and thermal stability for a series of substituted difurazano[3,4-b:3′,4′-e]piperazines and their analogues were studied using density functional theory. The results show that it is a useful way to increase the heat of formation values of energetic compounds by incorporating a five- or six-membered aromatic heterocycle to construct a fused ring system. The calculated detonation properties reveal that introducing one heterocycle to construct a fused ring structure greatly enhances their detonation properties. The substitution of the –NF2, –NO2 or –NHNO2 group is very useful for enhancing the detonation performance for the substituted derivatives. According to molecular structure and natural bond orbital analysis, the introduction of the –NO2, –NF2 or –NHNO2 group decreases the stability of the substituted derivative. There is a weak N–NO2 bond conjugation in the NO2-substituted derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that all the unsubstituted derivatives have good thermal stability, but the substitution of –NO2 or –NF2 remarkably decreases their stability. Considering the detonation performance and thermal stability, eight compounds may be considered as the potential candidates of high-energy density materials with less sensitivity.  相似文献   

8.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

9.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N][Me4N+] and [Ph3C][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (CO and CN) in the hydroamination of Ar NCO and R NCN R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated CC bonds in H2CCHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

10.
Density functional theory and volume‐based thermodynamics calculations were performed to study the effects of different substituents and linkages on the densities, heats of formation (HOFs), energetic properties, and thermodynamics of formation for a series of energetic nitrogen‐rich salts composed of triaminoguanidinium cation and 5‐nitroiminotetrazolate anions. The results show that the ? NO2, ? NF2, or ? N3 group is an effective substituent for increasing the densities of the 5‐nitroiminotetrazolate salts, whereas the effects of the bridge groups on the density are coupled with those of the substituents. The substitution of the group ? NH2, ? NO2, ? NF2, ? N3, or the nitrogen bridge is helpful for increasing the HOFs of the salts. The calculated energetic properties indicate that the ? NO2, ? NF2, ? N3, or ? N?N? group is an effective structural unit for improving the detonation performance for salts. The thermodynamics of formation of the salts show that all the salts may be synthesized easily by the proposed reactions. The structure‐property relationships provide basic information for the molecular design of novel high‐energy salts. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Summary: In this paper, films were prepared from soy protein and corn starch in different proportions and thermal stability and kinetic parameters were determined through degradation reactions in an inert atmosphere. Solid residues and decomposition products were identified by infrared spectroscopy. Films from corn starch were less thermally stable than soy protein films. The films containing both components had lower thermal stabilities when compared to those of the pure biopolymers. The mechanism of starch thermal degradation seems to occur in a single step, which can be confirmed by the constant E-values during the thermal degradation reaction. For the pure protein and its mixtures an increase in the activation energy was observed during the reaction. Solid residues for protein at different temperatures showed mainly bands related to CO stretching, angular deformation of N H and C H groups. For starch, absorptions related to free and bound O H, CO stretching of CO2, CO and carbonyl compounds were observed. For the 50/50 mixture bands related to soy protein and corn starch were observed. The gaseous products for soy protein showed absorptions related to CO2, CO, CO, NH3 and C H stretching. For pure starch absorptions related to O H stretching from alcohol, CO from CO2, CO and carbonyl compounds. The 50/50 mixture had the same characteristics as pure soy protein and corn starch.  相似文献   

12.
Four novel cage compounds were designed by introducing –N(NO2)CH2–, –N(NO2)O–, –N(NO2)N(NO2)–, and –N=N– linkages into the RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) skeleton. Their molecular geometry, electronic structure, heat of formation, and detonation properties were systematically studied using density functional theory (DFT). In addition, the most stable dimers of the four compounds were constructed to further investigate their stability based on intermolecular interactions. It is found that the unconventional CH⋯O interactions would be the dominant driving force when the title compounds form crystals. Compared with the traditional explosives, the compounds with higher detonation properties and lower impact sensitivity will be considered as promising candidates for high energy density compounds. Our results indicate that our innovative design strategy is extremely useful for developing novel energetic compounds.  相似文献   

13.
A series of new high-energy insensitive compounds were designed based on 1,3,5-trinitro-1,3,5-triazinane (RDX) skeleton through incorporating -N(NO2)-CH2-N(NO2)-, -N(NH2)-, -N(NO2)-, and -O- linkages. Then, their electronic structures, heats of formation, detonation properties, and impact sensitivities were analyzed and predicted using DFT. The types of intermolecular interactions between their bimolecular assemble were analyzed. The thermal decomposition of one compound with excellent performance was studied through ab initio molecular dynamics simulations. All the designed compounds exhibit excellent detonation properties superior to 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and lower impact sensitivity than CL-20. Thus, they may be viewed as promising candidates for high energy density compounds. Overall, our design strategy that the construction of bicyclic or cage compounds based on the RDX framework through incorporating the intermolecular linkages is very beneficial for developing novel energetic compounds with excellent detonation performance and low sensitivity.  相似文献   

14.
In order to search for high energy density materials, various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed. Density functional theory was employed to investigate the relationships between the structures and properties. The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents. The -N\begin{document}$ _3 $\end{document} energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} group contributed much to the values of detonation properties. The analysis of bond orders and bond dissociation energies showed that the addition of -NHNH\begin{document}$ _2 $\end{document}, -NHNO\begin{document}$ _2 $\end{document}, -CH(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} and -C(NO\begin{document}$ _2 $\end{document})\begin{document}$ _3 $\end{document} groups would decrease the bond dissociation energies remarkably. Compounds A8, B8, C8, D8, E8, and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities. Additionally, the electronic structures of the screened compounds were calculated.  相似文献   

15.
Nitrogen-rich energetic materials based on five-membered azoles, such as tetrazoles, triazoles, oxadiazoles, pyrazoles, and imidazoles, have garnered significant attention in recent years due to their environmental compatibility while maintaining high performance. These materials, including explosives, propellants, and pyrotechnics, are designed to release energy rapidly and efficiently while minimizing the release of toxic or hazardous byproducts and have attracted potential applications in the defense and space industries. The presence of extensive N C, N N, and NN high energy bonds in azoles provides high enthalpies of formation and facilitates intermolecular interactions through π-stacking which may help with reducing sensitivity to external stimuli. Now, we report on the synthesis and energetic properties of N-(5-(1H-tetrazol-5-yl)-1,3,4-oxadiazol-2-yl)nitramide ( 5 ) and its energetic salts. These new high nitrogen–oxygen-containing materials have attractive feature applications of insensitivity and increased performance.  相似文献   

16.
N-methyl-ethylidenimine (CH3 CHN CH3) was obtained by pyrolysis of 2-methylaziridine in a gas phase flow system, using quartz as a catalyst. Pyrolysis of aziridine gave mainly N-methyl-methylenimine (CH2N CH3). Under the conditions used in this work, pyrolysis of both compounds surprisingly showed cleavage of the CC-bond in the three-membered ring. No monomeric ethylidenimine (CH3 CHNH) could be isolated by pyrolysis of trimeric ethylidenimine (2,4,6-trimethyl-hexahydro-1,3,5-triazine), whereas N-vinyl-ethylidenimine (CH3 CHN CHCH2) could be identified as one of the pyrolysis products. NMR. data for N-methyl-ethylidenimine and N-vinyl-ethylidenimine are given for identification purposes.  相似文献   

17.
In this study, based on two model nitramine compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5, 7-tetrazocine (HMX), two series of new energetic molecules were designed by replacing carbon atoms in the ring with different amounts of boron atoms, their structures and performances were investigated theoretically by the density functional theory method. The results showed that the boron replacement could affect the molecular shape and electronic structure of RDX and HMX greatly, and then would do harm to the main performance like the heat of formation, density, and sensitivity. However, the compound RDX-B2 is an exception; it was formed by replacing two boron atoms into the system of RDX and has the symmetric boat-like structure. Its oxygen balance (4.9%), density (1.91 g/cm3), detonation velocity (8.85 km/s), and detonation pressure (36.9 GPa) are all higher than RDX. Furthermore, RDX-B2 has shorter and stronger N NO2 bonds than RDX, making it possesses lower sensitivity (45 cm) and better thermal stability (the bond dissociation energy for the N NO2 bond is 204.7 kJ/mol) than RDX. Besides, RDX-B1 and HMX-B4 also have good overall performance; these three new molecules may be regarded as a new potential candidate for high energy density compounds.  相似文献   

18.
A new structural type for melt cast materials was designed by linking nitrotetrazole ring with 1,2,4-oxadiazole through a N-CH2-C bridge for the first time. Three N-CH2-C linkage bridged energetic compounds, including 3-((5-nitro-2H-tetrazol-2-yl) methyl)-1,2,4-oxadiazole (NTOM), 3-((5-nitro-2H-tetrazol-2-yl)methyl)-5-(trifluoromethyl)-1,2,4 -oxadiazole (NTOF) and 3-((5-nitro-2H-tetrazol-2-yl)methyl)-5-amine-1,2,4-oxadiazole (NTOA), were designed and synthesized through a two-step reaction by using 2-(5-nitro-2H-tetrazole -2-yl)acetonitrile as the starting material. The synthesized compounds were fully characterized by NMR (1H, 13C), IR spectroscopy and elemental analysis. The single crystals of NTOM, NTOF and NTOA were successfully obtained and investigated by single-crystal X-ray diffraction. The thermal stabilities of these compounds were evaluated by DSC-TG measurements, and their apparent activation energies were calculated by Kissinger and Ozawa methods. The crystal densities of the three compounds were between 1.66 g/cm3 (NTOA) and 1.87 g/cm3 (NTOF). The impact and friction sensitivities were measured by standard BAM fall-hammer techniques, and their detonation performances were computed using the EXPLO 5 (v. 6.04) program. The detonation velocities of the three compounds are between 7271 m/s (NTOF) and 7909 m/s (NTOM). The impact sensitivities are >40 J, and the friction sensitivities are >360 N. NTOM, NTOF and NTOA are thermally stable, with decomposition points > 240 °C. The melting points of NTOM and NTOF are 82.6 °C and 71.7 °C, respectively. Hence, they possess potential to be used as melt cast materials with good thermal stabilities and better detonation performances than TNT.  相似文献   

19.
The synthesis of the title compounds 1 by 1 : 1 condensation of Ar NSNSiMe3 2 with SCl2 followed by intramolecular ortho‐cyclization of each [Ar NSN S Cl] intermediate is complicated by further reaction of 1 with SCl2 to give Herz salts 3 . With the 2 :SCl2 ratio of 2:1, the formation of by‐products 3 is reduced and novel compounds 1 are accessible. With ortho‐I containing starting material 2j , the parent compound 1s is obtained as the result of an unexpected I, not H, substitution. The rate of the 1 + SCl2 reaction depends upon a substituent's position, and the minor 8‐R isomers 1l,p (R = Br, I) are isolated for the first time from mixtures with the major 6‐R isomers due to reduced reactivity toward SCl2. The synthesized compounds 1–3 are characterized by multinuclear (including nitrogen) NMR and X‐ray crystallography. According to the X‐ray diffraction data, 1j (6‐Br) and 1k (7‐Br) derivatives are planar, whereas 1i (5‐Br) and 1l (8‐Br) are bent along the S1···N4 line by ∼5° and ∼4°, respectively, and the 1r (7‐OCH3) derivative is planar in contrast to the known 5‐OCH3 isomer, which possesses a significantly folded heterocycle. The distortion of the planar geometry of some compounds 1 is interpreted in terms of a pseudo‐Jahn‐Teller effect as the result of π‐highest occupied molecular orbital (HOMO)  σ*‐(LUMO) lowest unoccupied molecular orbital + 1 mixing in a planar conformation. The 2p compound is the first structurally defined Ar–N = S = N–SiMe3 azathiene. The compound Ar–N = S = N–S–NH‐Ar 6 modeling the aforementioned intermediate has been isolated and structurally characterized. We describe the attempts to synthesize compounds 1 from 2‐aminobenzenethiols and (SN)4 and from salts 3 and Me3SiN3, and we discuss the reaction pathways. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:563–576, 2001  相似文献   

20.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号