首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
As one of the naturally abundant elements,carbon can present in different molecular structures(allotropes) and thus lead to various physical/chemical properties of carbon-based materials which have found wide applications in a variety of fields including electrochemistry,optical,adsorption and catalysis,etc.On the other hand,its different allotropes also endow carbon-based materials with various morphostructures,which have been recently explored to prepare oxides and zeolites/zeotypes with tailored structures.In this review,we mainly summarize the recent advances in using carbon materials as hard templates to synthesize structural materials.Specifically,we focus on the development in the synthetic strategies,such as endotemplating,exotemplating approaches and using carbon materials as chemical reagents for the synthesis of metal carbides or nitrides,with an emphasis laid on the control of morphostructure.Meanwhile,the applications of the obtained materials will be highlighted,especially,in the field of heterogeneous catalysis where enhanced performances have been achieved with the materials derived from carbon-templated methods.  相似文献   

2.
魔芋葡甘聚糖功能材料研究与应用进展   总被引:66,自引:1,他引:66  
为了更好地开发利用魔芋葡甘聚糖(KGM),本文阐明了KGM独特的结构、优良的理化性质,分析了其结构与性能的关系, 综述了在食品、化工、医药、石油钻探等应用领域中形成的以KGM为基本组成的功能材料研究进展。并对近几年国内外KGM在该领域的研究动向及其应用前景进行了探讨。  相似文献   

3.
Wang Z  Yu J  Xu R 《Chemical Society reviews》2012,41(5):1729-1741
Zeolites are an important class of materials which are widely used in industry as catalysts, adsorbents and ion-exchangers. Their superior properties are closely related to their unique porous framework structure, as well as composition and morphology. The ever-growing needs for zeolitic materials in applications inspire us to think of the rational synthesis of zeolites with desired structures and properties. However, rationalization of zeolitic materials remains one of the most challenging issues in the zeolite research field due to their unclear formation mechanism. Despite this, many efforts have been devoted to synthesize zeolites in a more rational way. In this tutorial review, first, we demonstrate how the geometrical characteristics of zeolite frameworks affect the catalytic performances of the resulting materials; then, we present recent advances in synthetic innovations to target materials, and we further highlight the developments in computer simulations toward ab initio design and synthesis; finally, the future perspective on the rational synthesis of zeolitic materials with desired functions and structures will be described.  相似文献   

4.
Among various two-dimensional (2D) materials, organic 2D polymers have attracted much attention, owing to their specific properties, such as lightweight, good flexibility, adjustable structure, and high adaptability. In recent years, more and more scientists have devoted to the research on their structural design, synthesis, characterization, and potential properties. However, in contrast to traditional one-dimensional (1D) and three-dimensional (3D) network macromolecules, the synthesis of 2D structures presents a challenge to polymer chemists, because polymerization usually takes place in a spatially random manner in solution-phase synthesis. In this review, we will focus on the synthesis methods of organic 2D materials, which have played a pivotal role since the beginning of the development of this field. We will highlight the representative examples according to the different types of polymers, including supramolecular organic 2D layers and covalent organic 2D polymers, and identify possible future research directions.  相似文献   

5.
With bamboo shoot shell nanofibers(BSN) and konjac glucomannan(KGM) as precursor materials, the BSN/KGM aerogels were prepared in different proportions by sol-gel method. The surface morphology, microstructure, characteristic functional groups and thermal properties of BSN/KGM aerogels were characterized by scanning electron microscopy(SEM), infrared spectroscopy(IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The effect of BSN on the structure and properties of BSN/KGM aerogels was also studied. The results showed that the BSN/KGM aerogels possessed network porous structure with compact and homogeneous porosity, high specific surface area and low density. With the increase of BSN, the sheet structure of aerogels was converted into the 3D porous network structure, which contributes significantly higher thermal stability. In addition, the BSN/KGM aerogels showed excellent mechanical properties. The maximum relative compression rate was 62%, suggesting the addition of BSN can enhance the compression properties of the BSN/KGM aerogels.  相似文献   

6.
It is the nature of crystals to exist in different polymorphs. The recent emergence of two-dimensional (2D) materials has evoked the discovery of a number of new crystal phases that are different from their bulk structures at ambient conditions, and revealed novel structure-dependent properties, which deserve in-depth understanding and further exploration. In this contribution, we review the recent development of crystal phase control in 2D materials, including group V and VI. transition metal dichalcogenides (TMDs), group IVA metal chalcogenides and noble metals. For each group of materials, we begin with introducing the various existing crystal phases and their structure-related properties, followed by a detailed discussion on factors that influence these crystal structures and thus the possible strategies for phase control. Finally, after summarizing the whole paper, we present the challenges and opportunities in this research direction.  相似文献   

7.
The explosion of research on graphene has prompted a similar level of activity on materials with related structures, i.e. two-dimensional materials formed from solids with a laminar structure, which can be isolated in their monolayer form. The main focus of activity beyond graphene, in electrochemical and other contexts, has focussed on the transition metal dichalcogenides. This review will highlight important advances in the use of these materials in an electrochemical context. The existence of a “family” of two-dimensional materials has led to recent interest in the creation of “van der Waals heterostructures”, where dissimilar two-dimensional materials are assembled in a specific fashion to produce structures with distinct electronic properties. The application of these materials in electrochemistry is in its infancy but very recent works suggest this will be an extremely important area of research in the coming years.  相似文献   

8.
Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic–inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order–disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic–inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic–inorganic hybrid molecular ferroelastics.  相似文献   

9.
CuBTC (Copper(II) benzene-1,3,5-tricarboxylate) is one of the most well characterized and widely studied metal organic framework (MOF) structures for potential use in industrial applications due to its relatively easy synthesis and excellent textural and physicochemical properties. In this comprehensive review, a different perspective on MOF materials for future sustainability is presented by critically examining the recent works that have considered the synthesis and adsorption/catalytic applications of CuBTC as a model case.  相似文献   

10.
Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.  相似文献   

11.
Organo‐functionalized materials with porous structure offer unique adsorption, catalytic and sensing properties. These unique properties make them available for various applications, including catalysis, CO2 capture and utilization, and drug delivery. The properties and the performance of these unique materials can be altered with suitable modifications on their surface. In this review, we summarize the recent advances in the preparation and applications of organo‐functionalized porous materials with different structures. Initially, a brief historical overview of functionalized porous materials is presented, and the subsequent sections discuss the recent developments and applications of various functional porous materials. In particular, the focus is given on the various methods used for the preparation of organo‐functionalized materials and their important roles in the heterogenization of homogeneous catalysts. A special emphasis is also given on the applications of these functionalized porous materials for catalysis, CO2 capture and drug delivery.  相似文献   

12.
Molecularly imprinted polymers with photo-luminescent properties (PLMIPs) and PLMIPs-based hybrids have been widely studied in recent years because of their integrated merits from molecular imprinting technologies and PL properties. PLMIPs have superior capabilities for signal transducer and molecular recognition, exhibiting great potential as the constructing platforms for promising applications. During the past decade, numerous researches have mentioned PLMIPs. In terms of unique merits and important applications of PLMIPs, a timely, comprehensive and in-depth review on PLMIPs is significant and is still lacking currently. This review systematically summarizes recent advances of PLMIPs, focusing on different synthetic methods and applications. Based on different components and structures, PLMIPs include different categories. Synthetic methods majorly involve encapsulation polymerization of nanomaterials (fluorophores) into MIPs, copolymerization of fluorescent monomers, electro-polymerization, photo-polymerization, etc. Various engineering structures and luminescence properties of PLMIPs are highlighted Potential applications of PLMIPs mention significant research fields, including chemo/bio-detection, bio-imaging, functionalized separation materials, versatile sensing materials, optical devices, etc. We also discuss present status, probable challenges and future perspectives of PLMIPs. This review is desirable for scientists from broad research fields and can promote further development of MIPs-based functional materials, luminescent hybrid materials and other advanced optical materials.  相似文献   

13.
As a class of metal-free two-dimensional (2D) semiconductor materials, polymeric carbon nitrides have attracted wide attention recently due to its facile regulation of the molecular and electronic structures, availability in abundance and high stability. According to the different ratios of C and N atoms in the framework, a series of CxNy materials have been successfully synthesized by virtue of various precursors, which further triggers extensive investigations of broad applications ranging from sustainable photocatalytic reactions and highly sensitive optoelectronic biosensing. In view of topological structures on their electronic structures and material properties, the as-reported CxNy could be generally classified into two main categories with three- or six-bond-extending frameworks. Owing to the effective n→π* transition in most CxNy materials, the relative energy level of the lone-pair electrons on N atoms is high, which thus endows the materials with the capability of visible light absorption. Meanwhile, the different repeating units, bridging groups and defect sites of these two kinds of CxNy allow them to effectively drive a diverse of promising applications that require specific electronic, interfacial and geometric properties. This review paper aims to summarize the recent progress in topological structure design and the relevant electronic band structures and striking properties of CxNy materials. In the final part, we also discuss the existing challenges of CxNy and outlook the prospect possibilities.  相似文献   

14.
Lead halide hybrid perovskites have received massive research attention because of their unique inherent photophysical properties that driven them for potential application in the fields of photovoltaics, light-emitting devices, lasing, X-ray detector, and so on. Perovskite single crystals and nanocrystals are generally synthesized via various low-cost solution-processed techniques. The emergence of simple growth approaches of perovskite structures enable to fabricate low-cost and highly efficient devices. However, toxicity of Pb atoms and instability of perovskite structures obstruct further commercialization of these technologies. Recent efforts have been shifted to discover novel, eco-friendly, and stable lead-free metal halide perovskite (LFHP) materials and exploring their different growth processes for various device applications. This review aims to provide an up-to-date analysis of recent progress report on LFHPs and will mainly focus on their growth processes in the single crystalline and nanocrystalline forms. This review also tries to understand how the perovskite crystal structure impacts on their fundamental properties. In addition, we discuss the current progress in various field of applications and their future aspects.  相似文献   

15.
Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, “click” reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects: (1) Constructions of monocyclic polymer using CuAAC “click” chemistry; (2) Formation of complex cyclic polymer topologies through CuAAC reactions; (3) Using CuAAC “click” reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.  相似文献   

16.
与传统的块状气凝胶不同,气凝胶微球是一种具有独特结构的新材料。它既由纳米级材料构建,又有微米级尺寸,同时还具备气凝胶特有的热、声、光、电性质和复杂的三维网络拓扑结构,在生物医药、环境修复、功能性载体、能源存储和转化等领域具有广泛的应用潜力。近年来,国内外关于气凝胶微球的研究进展迅速,但关于气凝胶微球的综述还没有报道。本文结合气凝胶微球领域最新的研究进展,从气凝胶微球的制备方法、种类以及不同种类的气凝胶微球在环境、医药、能源领域的应用等方面进行了综述。  相似文献   

17.
Solar-based desalination or water purification is regarded as one of the promising solutions to global water scarcity as the only energy input is abundant and sustainable solar light. Interfacial solar vapor generation (SVG), which converts natural sunlight into clean water vapor, has attracted extensive research interests due to its high-energy utilization efficiency and simple implementation. With tunable molecular structures and tailorable physical properties, polymers have demonstrated great potential as candidate materials for solar evaporators. In this review, we summarize the recent progress on polymer materials for solar-powered water purification. First, we present functional polymers with highly tunable molecular composition and morphology as high-efficiency solar absorbers. Next, the recent development of various polymeric materials and structural engineering strategies for adequate water supply and efficient thermal management are discussed, along with their excellent desalination and purification performance. Last, we outline the challenges and future directions on the further development of polymer materials for solar water purification technologies.  相似文献   

18.
Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear to 2 D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2 D materials from three respects:(1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2 D networks were described;(2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced;(3) Functionalization and some early applications.  相似文献   

19.
To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. Irradiation modification could effectively improve the KGM membrane properties, and it is an ideal modification method.  相似文献   

20.
材料基因工程是近年来材料领域兴起的前沿技术, 其基本理念是融合材料高通量计算、 高通量实验和数据技术加速新材料的设计和研发. 分子筛作为一种重要的化工材料, 因其良好的热稳定性、 较高的比表面积、 独特的孔道结构及可调变的元素组成和酸性, 在气体吸附、 分离、 异相催化和离子交换等工业领域应用广泛. 近年来, 融合高通量计算、 高通量实验和数据库技术的材料基因工程技术正逐步应用于分子筛研发等领域: 高通量计算能够从理论上预测并筛选出具有优异性能的分子筛合成目标、 高通量实验显著提升了分子筛材料合成与表征的效率、 数据库技术则为未来挖掘分子筛材料的合成规律与构效关系奠定了数据基础. 本文主要从这3个方面阐述材料基因工程技术在分子筛材料研发领域的应用及进展, 总结以功能为导向、 定向设计和构筑分子筛材料所面临的机遇与挑战, 并对材料基因工程技术在分子筛领域的前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号