首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
在温和的条件下,利用3-乙酰基吲哚与吲哚的加成/取代串联反应,高效地合成了一系列高度拥挤的四取代三吲哚甲烷.该方法通过在3-乙酰基吲哚的氮原子上引入吸电子基团,提高了3-乙酰基吲哚的反应活性,具有原料廉价易得、底物适用性广、操作简便等优点.  相似文献   

2.
在温和的条件下,利用3-乙酰基吲哚与吲哚的加成/取代串联反应,高效地合成了一系列高度拥挤的四取代三吲哚甲烷.该方法通过在3-乙酰基吲哚的氮原子上引入吸电子基团,提高了3-乙酰基吲哚的反应活性,具有原料廉价易得、底物适用性广、操作简便等优点.  相似文献   

3.
吲哚膦酸酯是一类重要的化合物,具有潜在的生理活性;此外,从它出发可以衍生出其他多种物质.利用醋酸锰引发二烷基亚膦酸酯产生膦酸酯基自由基与吲哚发生选择性的反应,成功合成了一系列吲哚膦酸酯衍生物,该方法也适用于二苯氧膦.该反应条件较温和、操作简单,为2-和3-膦酰化吲哚的合成提供了一种有效的方法.  相似文献   

4.
报道了一类新颖的三氟甲基磺酸钪催化的吲哚-2-甲醇的去芳构化反应.该反应利用吲哚-2-甲醇衍生物在酸性催化下发生极性翻转的特性,将其吲哚环3-位的亲核中心转变为亲电位点,实现与另一分子吲哚发生偶联反应,合成了一系列具有环外双键结构的3,3'-双吲哚衍生物,产率中等到优秀.其中N-磺酰基团的强诱导作用和大位阻效应是吲哚-2-甲醇的吲哚环发生去芳构化的关键因素.基于实验结果及文献报道,提出了可能的反应机理,其中涉及吲哚-2-甲醇衍生物的去羟基化和亲核加成等.此外,该反应具有高官能团兼容性、条件温和、操作简便等优点.  相似文献   

5.
吲哚类化合物是自然界中分布最广的杂环化合物之一,过渡金属催化吲哚C—H官能团化的方法是合成吲哚类化合物最有效的方法之一.综述了近几年来吲哚C—H芳基化反应的研究进展,根据吲哚骨架不同位置的C—H键活化,探讨了吲哚直接C—H芳香偶联反应的研究进展,对底物适应范围和反应机理等进行了详细论述,并就该领域的局限性和未来的发展前景进行总结和展望.  相似文献   

6.
3-取代吲哚甲胺衍生物因其多种生物活性而备受关注.吲哚与N-磺酰醛亚胺的Friedel-Crafts反应是制备3-取代吲哚甲胺衍生物的主要方法,但反应中通常会伴随大量的双吲哚甲烷化合物的生成.应用Cu(OTf)_2和脯氨亚磺酰胺共同催化吲哚与N-磺酰醛亚胺的Friedel-Crafts反应,可以选择性地合成3-取代吲哚甲胺衍生物,产率为65%~93%.该方法具有底物适用性好、反应条件温和、操作简单等优点.  相似文献   

7.
亮点介绍     
《有机化学》2013,(4):866-868
Fischer吲哚合成法区域选择性问题的解决方案Angew.Chem.Int.Ed.2013,52,1266~1269 Fischer吲哚合成法不仅是吲哚合成史上的里程碑,它在整个有机化学发展史中也是经典之作.虽然过去一个多世纪有机化学界对Fischer吲哚合成法有无数的研究、应用及拓展,但它源于非对称酮底物所产生的区域选择性问题一直没有得到好的解决,这大大制约了该方法在复杂分子结构合成中的应用.南开大学元素有机化学国家重点实验室梁广鑫课题组利用苯肼和烯基卤化物偶联选择性生成[3,3]重排反应前体的策略,很好地解决了这个问题.该反应很强的官能团耐受力使反应吲哚化后形成的亚胺中间体可以被底物中亲核性的官能团捕获而一步构筑含有季碳手性中心的复杂环系,使Fischer吲哚合成法在吲哚生物碱全合成中的应用前景得到了极大的拓展.  相似文献   

8.
吲哚化学的研究是杂环化学中最活跃的领域之一,特别是有关3-取代吲哚衍生物的合成.3-取代吲哚衍生物可以构建许多天然产物和相应具有生物活性化合物,其合成方法的研究格外令人关注.介绍了在微波辐射下,通过取代苯甲酰甲醛水合物、取代苯胺和4-羟基香豆素三组分,在三氟乙酸的催化下反应构建一系列官能团化的3-取代吲哚衍生物.该反应具有反应操作简单、原料廉价易得及原子经济性高等优点.  相似文献   

9.
探讨了价廉易得、环境友好和无毒性的Fe Cl3催化的α-羟基二硫缩烯酮与吲哚的Friedel-Crafts烷基化反应.研究表明,在室温(25℃)条件下CH2Cl2中,在2.5 mol%Fe Cl3存在下,α-羟基二硫缩烯酮与吲哚及1-或2-位取代吲哚能有效进行Friedel-Crafts烷基化反应,高产率合成α-吲哚基二硫缩烯酮.该反应具有催化剂经济易得、用量少、反应条件温和、环境友好和操作简单等优点.  相似文献   

10.
对在α-环匹阿尼酸(α-CPA)和speradineC全合成中发展的仿生吲哚苄位碳正离子引发的串联环化反应的普适性和机理进行了研究,实验结果表明,该苄位碳正离子串联环化反应在含有吲哚的底物中能顺利发生,说明吲哚氮原子的共轭效应在吲哚苄位碳正阳离子串联环化反应中起到了关键性的作用.  相似文献   

11.
报道了一种基于Friedel-Crafts反应的3-吲哚取代苯硼唑的水相合成方法.以邻甲酰苯硼酸和吲哚为原料,无需外加催化剂,在室温下使用纯水为反应介质,以中等到定量的产率得到3-吲哚取代的苯硼唑类化合物.该方法具有操作简单、合成效率高、环境友好的优点.  相似文献   

12.
以Pd(OAc)2为主催化剂,以Cu为助催化剂,以碘为氧化剂,高效地实现了吲哚与苯炔直接羰化合成吲哚-3-炔酮,并优化了反应条件. 结果表明,该催化剂体系对带有不同取代基的吲哚、端炔类化合物具有非常好的适用性,最高分离产率可达94%. 生成的吲哚-3-炔酮产物可进一步与叠氮化钠和溴苄一锅反应,高产率地得到3-甲酰三唑基吲哚类化合物. 由于原料来源简单,产率高,且两类产物都是重要的中间体,因此该方法具有一定的应用价值.  相似文献   

13.
焦宁 《有机化学》2009,29(7):1165-1165
吲哚类化合物作为一类重要的具有生物和药物活性的分子, 其构建方法一直是人们的研究热点(Chem. Rev. 2006, 106, 2875~2911). 金属催化合成吲哚的反应已经有大量的报道, 其中利用邻位带有卤素的苯胺和炔的反应是一类合成吲哚的重要方法, 但是该方法原料比较难以获取, 并且反应不够原子经济性. 北京大学天然药物及仿生药物国家重点实验室焦宁等首次报道了以醋酸钯作为催化剂, 氧气作为氧化剂, 发展了一类由简单的芳香胺类化合物与炔反应生成吲哚的新方法, 并且将该反应很好地运用在药物活性分子合成中. 该方法条件简单, 原料易得, 原子经济性高, 产率最高可达99%, 并且产物易于官能团转化, 是吲哚合成的一种理想方法.  相似文献   

14.
顾大公  纪顺俊 《中国化学》2008,26(3):578-582
在酸性离子液体催化下,通过吲哚及其衍生物和吲哚甲醛反应合成了一系列三吲哚甲烷化合物。[hmim]HSO4/EtOH 对于该反应来说,是一个高效、绿色的催化体系。  相似文献   

15.
含吲哚骨架衍生物因其具有多样的生物活性,广泛应用于生物活性分子的合成与修饰,特别是在药物化学、农药化学领域中.近年来,高效的吲哚环合成与后官能化反应己成为热门的研究主题,例如吲哚的不对称去芳构化反应构建螺环衍生物.不饱和烃的自由基串联反应一直是有机化学的一个重要研究分支,含吲哚母体的不饱和烃串联环化反应已经成为吲哚骨架...  相似文献   

16.
用三氟甲磺酸镱和配体共同催化吲哚与β-硝基烯的Friedel-Crafts反应,从而发展了一条简捷新颖地合成天然产物中广泛存在的3-取代吲哚衍生物的方法.该催化剂有反应条件温和、操作简单和价格较低等优点.  相似文献   

17.
郑龙  王丽佳  唐勇 《化学学报》2022,80(3):255-258
本工作使用In(NTf2)3作为金属Lewis酸催化剂, 实现了吲哚-环丙烷分子内的亲核开环反应, 克服了脂肪族取代的环丙烷活性低、不易实现开环反应的难题. 利用该方法可以简单高效地构建吡咯并[1,2-a]-吲哚骨架结构的化合物. 该反应条件温和, 底物普适性广, 最终以15个反应实例, 高达96%收率得到一系列吡咯并[1,2-a]-吲哚化合物.  相似文献   

18.
在环状磷酸催化下,通过吲哚和醛酮的亲电取代反应,室温下合成了一系列二吲哚甲烷衍生物.考察了催化剂结构、用量和溶剂等因素对反应的影响,确定了最优反应条件,提出了可能的反应机理.该方法具有操作简单、条件温和、催化剂用量少、产率高及环境友好等优点.  相似文献   

19.
在生物质葡萄糖酸水溶液中,醛、吲哚和2,2-亚戊基-1,3-二噁烷-4,6-二酮通过"一锅煮"三组分反应合成了13种新型β-吲哚衍生物,产率为66.4%~98.5%.该方法具有反应条件温和、底物普适性好、收率高及对环境友好等优点,为β-取代吲哚类化合物的合成提供了一种有效的新方法.  相似文献   

20.
近年来,多米诺反应作为合成吲哚衍生物的有效方法已得到有机合成化学家的广泛关注.该反应过程中,不需改变反应条件和添加试剂,中间体也无需分离和提纯,实现了原子经济和环境友好的目标.通过过渡金属催化的多米诺反应合成吲哚衍生物,已经得到了深入研究并成为一种构筑该类杂环的有利工具.重点综述了近年来运用金属催化多米诺反应合成吲哚及其衍生物方面的研究进展,以催化剂的类型进行分类,介绍相关反应的特点和优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号