首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Room temperature ionic liquid [bmim]PF6 was used to immobilize a bimetallic catalytic system for H2O2-based dihydroxylation of alkenes. Osmium tetroxide was used as the substrate-selective catalyst with either VO(acac)2 or MeReO3 as co-catalyst. The latter serve as an electron transfer mediator (ETM) and activates H2O2. For an increased efficiency N-methylmorpholine is required as an additional ETM in most cases. A range of alkenes were dihydroxylated using this robust bimetallic system and it was demonstrated that for some of the alkenes the catalytic system can be recycled and used up to five times.  相似文献   

2.
The epoxidation of several alkenes catalyzed by (meso-tetrakis(pentafluorophenyl)porphinato) manganese(III) chloride (MnTFPPCl) was carried out in a 3:1 [bmim]PF6 ionic liquid/CH2Cl2 mixed solvent. The conversion and the yield of epoxide are excellent. It was also found that [bis(acetoxy)iodo]benzene [PhI(OAc)2] is a more efficient oxidant than PhIO. The catalyst in the ionic liquids can be recycled for several runs without substantial diminution in the catalytic activity.  相似文献   

3.
1,3-Dipolar cycloadditions of nitrones with alkenes afforded the corresponding isoxazolidines in ionic liquids in the presence of Er(OTf)3. The ionic liquid and the catalyst are recycled up to five times without any specific treatment or loss of activity. Extension of the procedure to the synthesis of isoxazolidinyl nucleosides has been investigated.  相似文献   

4.
离子液体功能化二氧化硅催化Knoevenagel反应   总被引:5,自引:0,他引:5  
在100 ℃, 无外加溶剂条件下, 离子液体功能化二氧化硅催化一系列芳醛和活泼亚甲基化合物进行Knoevenagel 缩合反应, 以高产率生成相应产物. 当反应底物为水杨醛与氰基乙酸乙酯的时候, 产物为3-乙氧基羰基香豆素, 这是水杨醛和氰基乙酸乙酯缩合关环, 再发生氰基醇解的产物. 采用离子液体功能化二氧化硅作为反应催化剂, 反应后催化剂可回收再利用.  相似文献   

5.
The novel efficient procedure has been developed for the conjugate addition of amines to electron deficient alkenes using the novel SO3H functionalized ionic liquid as catalyst. The results showed that the novel catalyst owned high activities for the reactions with excellent yields within several minutes. Various amines and electron deficient alkenes were successfully transformed to the corresponding products in the catalytic system. Operational simplicity, without need of any solvent, low cost of the catalyst used, room temperature, high yields, reusability, excellent chemoselectivity and wide applicability are the key features of this methodology.  相似文献   

6.
Effective epoxidation of alkenes using sodium periodate was accomplished with Manganese (III) tetrakis(p-sulfonatophenyl)porphyrin, [C44H26N4O12S4Na4], supported on ionic liquids-modified silica, Im-SiO2, under ultrasonic irradiation conditions is reported. This heterogeneous catalyst, [Mn(TPPS)@SiO2-Im] was characterized by elemental analysis, scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopic methods. The synthesized hybrid catalyst was applied for efficient epoxidation of various alkenes with sodium periodate in acetonitrile under ultrasonic irradiation conditions. This solid catalyst can be easily recovered by simple filtration and reused several time without apparent loss of its catalytic activity.  相似文献   

7.
Levulinic acid (LA) is an industrially important product that can be catalytically valorized into important value-added chemicals. In this study, hydrothermal conversion of glucose into levulinic acid was attempted using Brønsted acidic ionic liquid catalyst synthesized using 2-phenyl-2-imidazoline, and 2-phenyl-2-imidazoline-based ionic liquid catalyst used in this study was synthesized in the laboratory using different anions (NO3, H2PO4, and Cl) and characterized using 1H NMR, TGA, and FT-IR spectroscopic techniques. The activity trend of the Brønsted acidic ionic liquid catalysts synthesized in the laboratory was found in the following order: [C4SO3HPhim][Cl] > [C4SO3HPhim][NO3] > [C4SO3HPhim][H2PO4]. A maximum 63% yield of the levulinic acid was obtained with 98% glucose conversion at 180 °C and 3 h reaction time using [C4SO3HPhim][Cl] ionic liquid catalyst. The effect of different reaction conditions such as reaction time, temperature, ionic liquid catalyst structures, catalyst amount, and solvents on the LA yield were investigated. Reusability of [C4SO3HPhim][Cl] catalyst up to four cycles was observed. This study demonstrates the potential of the 2-phenyl-2-imidazoline-based ionic liquid for the conversion of glucose into the important platform chemical levulinic acid.  相似文献   

8.
A second generation Hoveyda-Grubbs ruthenium carbene complex bearing an ionic liquid tag was prepared and shown to be a highly reactive catalyst for the ring-closing metathesis of di-, tri- and tetrasubstituted diene and enyne substrates in minimally ionic solvent systems ([Bmim]PF6/CH2Cl2, 1:9-1:1 v/v). Both the catalyst and the ionic liquid can be conveniently recycled and repeatedly reused (up to 17 cycles) with only a very slight loss of activity. The ionic liquid tag is crucial to the high level of recyclability of the catalyst since the original second generation Grubbs and Hoveyda-Grubbs catalysts rapidly lose their activity when recycled in the ionic liquid layer.  相似文献   

9.
The epoxidation of alkenes with hydrogen peroxide catalyzed by [PZnMo2W9O39]5-, ZnPOM, supported on ionic liquid-modified silica, Im-SiO2, is reported. The immobilized catalyst, [ZnPOM@Im-SiO2] was characterized by elemental analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopic methods. This new synthesized hybrid catalyst was applied for efficient epoxidation of various olefins with aqueous H2O2 in acetonitrile under reflux conditions. This solid catalyst can be easily recovered by simple filtration and reused several times without significant loss of its catalytic activity.  相似文献   

10.
A simple and efficient PdCl2/CuCl catalyzed oxidation of alkenes has been successfully developed using a mixture of water and the ionic liquid [bmim][BF4] as solvent. Starting from various types of terminal olefins, the corresponding ketones have been prepared under mild reaction conditions and obtained in good to excellent yields after a simple extraction with diethyl ether. Furthermore, it was possible to recycle and reuse the ionic liquid and the catalytic system.  相似文献   

11.
1-n-Butyl-3-methylimidazolium tetrachloroaluminate ([BMIM]+[AlCl4]) was applied to biphasic ionic liquid/hexane ethylene polymerisation as a medium of the Cp2TiCl2 titanocene catalyst activated by alkylaluminium compounds (MAO, AlEt2Cl, AlEt3). The best results were obtained using AlEt2Cl. The results show that catalyst recycling, higher ethylene pressure, and greater Al/Ti molar ratio along with a greater volume of the ionic liquid phase enhance catalyst activity. The polyethylene gathered from the hexane phase is characterised primarily by its high purity. Its physical properties remain polyethylene obtained over a heterogeneous metallocene catalyst. Thus, biphasic ionic liquid polymerisation using a metallocene catalyst is possible and offers interesting technological implications.  相似文献   

12.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

13.
A systematic analysis was performed on a series of 1-n-alkyl-3-methylimidazolium tetrachloroaluminates (where alkyl = ethyl, butyl, hexyl, and octyl), applied as a medium of the Cp2TiCl2 titanocene catalyst, to evaluate the influence of the physical properties of the ionic liquids on the polymerisation reaction carried out in the biphasic ionic liquid/hexane mode. Two alkylaluminium compounds, AlEtCl2 and AlEt2Cl, were used as activators. The influence of the activator/catalyst molar ratio on the performance of the ethylene polymerisation was determined for each ionic liquid studied. The best results were obtained using 1-n-octyl-3-methylimidazolium tetrachloroaluminate. For the titanocene catalyst immobilised in the ionic liquid, AlEtCl2 turned out to be a better activator than AlEt2Cl in our studies. The properties of the polyethylene product have also been presented.  相似文献   

14.
磷钼杂多酸离子液体催化氧化脱硫   总被引:8,自引:0,他引:8  
安莹  陆亮  李才猛  程时富  高国华 《催化学报》2009,30(12):1222-1226
 合成了新型的磷钼杂多酸离子液体 [hmim]3PMo12O40, 并将其用于室温离子液体 1-甲基咪唑四氟硼酸盐 ([hmim]BF4) 为溶剂的模拟油品氧化脱硫反应. 结果表明, 在温和的反应条件下, 过氧化氢与硫摩尔比为 4:1 时, 二苯并噻吩脱硫率为 90%, 二苯硫醚、苯甲硫醚和二乙硫醚的脱除率可达 100%. 离子液体催化体系循环使用 4 次后, 脱硫率没有明显下降.  相似文献   

15.
Ionic liquid–modified silica has been prepared by a “one-pot” reaction of activated silica, 3-chloropropyltriethoxysilane, and alkylimidazole or pyridine. It was found that the catalytic activity and β-adduct selectivity of the supported catalyst Rh(PPh3)3Cl/ionic-liquid–modified-SiO2 for the hydrosilylation reaction of alkenes with triethoxysilane was significantly improved. Furthermore, the catalyst system could be recovered easily.  相似文献   

16.
Abstract

Anchoring 1-methyl-3-(triethoxysilylpropyl) imidazolium chloride onto silica-coated magnetic Fe3O4 particles afforded the corresponding supported ionic liquid. Exchanging the Cl? anion by treating with H2SO4 gave Brønsted ionic liquid 1-methyl-3-(triethoxysilylpropyl) imidazolium hydrogensulfate. The synthesized catalyst was characterized by various techniques such as infrared, x-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and elemental analyses. The results indicated that the prepared catalyst had a nanostructure. The catalytic activity of the supported ionic liquid was examined in the synthesis of the polysubstituted pyridines by reaction of aromatic aldehydes with acetophenones and ammonium acetate in moderate to good yields under solvent-free conditions. The catalyst can be easily recovered by applying an external magnetic field and reused for at least seven runs without deterioration in catalytic activity.  相似文献   

17.
Tungstate ions were successfully loaded onto triazine‐based ionic liquid‐functionalized magnetic nanoparticles through an anion exchange process. The use of triazine core for creating ionic liquid led to the immobilization of high amounts of WO42?. The resulting catalyst showed high activity and selectivity in the oxidation of sulfides to sulfoxides with H2O2 as a green oxidant at room temperature. In addition, due to the presence of ammonium groups in the catalyst structure, water dispersibility of the catalyst was increased. More important, the catalyst was magnetically recovered and reused for up to six runs without any marked decrease of activity and selectivity. Finally, easy gram‐scale oxidation of methylphenyl sulfide as well as fast separation of catalyst and product makes the protocol economical and industrially applicable.  相似文献   

18.
An expeditious, simple, and green method was developed for the synthesis of privileged aryl/heterocyclicphosphonates, 8(a–c) to 13(a–c) through Michaelis–Arbuzov reaction of aryl/heterocyclic halides (Br), 1–6, and trialkylphosphites, 7(a–c), in room-temperature ionic liquid [bbim]Br using heterogeneous Lewis catalyst, nano-silica-supported boron trifluoride (BF3-SiO2). The advantages of this protocol are simplicity, good yield of the products, less reaction time (20–38 min), mild reaction conditions, easy workup, and reusability of the catalyst and ionic liquid. It is demonstrated that nano-BF3-SiO2 is a recoverable and easy accessible catalyst for the formation of C(sp2)-P bond in an ionic liquid.  相似文献   

19.
Hui Guo 《Tetrahedron》2010,66(42):8300-8303
Acidic ionic liquid N-methyl-2-pyrrolidonium dihydrogen phosphate [NMP]H2PO4 was prepared and used as efficient catalyst and reaction medium to synthesize β-alkoxyketones by the oxa-Michael addition reactions for the first time. The effect of anions and cations, amount of ionic liquid on the reaction was investigated. Various alcohols and phenols proceeded smoothly and led to corresponding β-alkoxyketones with high yields under mild reaction conditions, O-selectivity addition of aminoethanols was also achieved in this paper. Compared with traditional imidazolium ionic liquids, [NMP]H2PO4 gave the better results. The ionic liquid was stable and could be reused at least five times with a slight loss of activity.  相似文献   

20.
Rhodium complexes bearing N-heterocyclic carbene (NHC) ligands were prepared from bis(η4-1,5-cyclooctadiene) dichlorodirhodium and 1-alkyl-3-methylimidazolium-2-carboxylate, and the catalytic properties of rhodium complexes prepared in the hydrosilylation of alkenes in ionic liquid media were investigated. It was found that both the catalytic activity and selectivity of the rhodium complexes bearing NHC ligands were influenced by the attached substituents of the imidazolium cation. Additionally, rhodium complexes bearing NHC ligands in ionic liquid BMimPF6 could be reused without noticeable loss of catalytic activity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号