首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
王霞  胡辉  白燕 《无机化学学报》2013,29(4):659-664
采用水热法制备了发白光的Li+掺杂α-TeO2∶Tm3+/Er3+/Yb3+和β-TeO2∶Tm3+/Er3+/Yb3+纳米上转换发光材料。采用X射线衍射、透射电镜和上转换发光光谱对制备的TeO2∶Tm3+/Er3+/Yb3+/Li+纳米材料进行表征,结果显示:Li+的掺入基本不改变纳米材料的晶型和结构;在980 nm近红外光的激发下,纳米材料发射出中心波长476 nm的蓝光,525 nm及545 nm的绿光和659 nm及675nm的红光,分别对应于Tm3+的1G4→3H6能级跃迁,Er3+的2H11/2→4I15/2和4S3/2→4I15/2能级跃迁,Er3+的4F9/2→4I15/2能级跃迁和Tm3+的3F2→3H6能级跃迁;Li+的掺入能够增大白光体系的发光强度,基本不改变纳米材料的白光颜色。此外,探讨了纳米材料的上转换发光机理。  相似文献   

2.
利用水热法以聚乙二醇作为分散剂合成了Er3+和Yb3+共掺的SrF2纳米晶.在980 nm半导体激光器激发下.研究了不同Er3+离子掺杂浓度对发光性能的影响,确定了最佳掺杂浓度比,讨论了退火温度对样品发光的影响及样品的协作敏化和声子辅助共振能量传递的上转换发光机制.用X射线衍射和透射电镜对样品的结构和粒度进行了分析.研究结果表明:用水热法在180℃保温13 h下,合成的样品粒径约为50 nm;当CYb3+CEr3+=4:1,而对Er3+掺杂浓度为1.3mol%时,样品上转换发光强度达到最强.  相似文献   

3.
采用溶胶-凝胶(Sol-gel)法制备了Li+共掺杂的Er3+-Yb3+∶TiO2粉末。976 nm激光激发下在波长350~1700 nm范围内观察到了紫外、蓝色、绿色和红色上转换发光和红外下转换发光。随着Li+共掺杂浓度由0增大到20mol%,Er3+-Yb3+∶TiO2的紫外、可见和红外发光强度同步增强。低Li+共掺杂浓度引起的Li+固溶以及高Li+共掺杂浓度引起的相变过程相继破坏了Er3+的晶体场对称性,导致紫外、可见和红外发光显著增强。结果表明共掺杂Li+是一种提高Er3+掺杂材料发光性能的有效方法。  相似文献   

4.
KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)荧光粉的制备与发光性能研究   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)系列荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:稀土离子的掺入没有改变荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现在近紫外光激发下掺杂Eu2+离子的样品具有宽带发射峰,最强发射位于450 nm左右,对应于Eu2+离子的4f65d1→4f7辐射跃迁。随着Eu2+掺杂量的增加,发射光从蓝光逐渐转变到蓝白光。另外,KSrBP2O8:Tb3+和KSrBP2O8:Eu3+能够在近紫外光激发下分别发射出绿光和红光,其最佳掺杂浓度分别为0.04%和0.08%(摩尔分数)。  相似文献   

5.
以强碱性阴离子交换树脂为交换介质,采用离子交换法制备了稀土Tb3+离子掺杂的ZrO2:Tb3+纳米晶.通过XRD,TG-DSC,TEM,HRTEM等手段分析了样品制备过程的物相变化及晶粒形貌,用荧光光度计研究了样品的三维荧光光谱、激发光谱和发射光谱.结果表明:前驱沉淀物经800℃焙烧处理2 h,制备出近方型形貌,颗粒分散性好、尺寸约为40 nm的四方相ZrO2:Tb3+纳米晶.当焙烧温度升高到900℃以上时样品出现了少量单斜晶相,而经800℃焙烧处理的纯Zr02是以四方相和单斜相同时存在.说明稀土Tb3+离子的掺杂对ZrO2基质的四方晶相起到稳定作用.由ZrO2:Tb3+)的等角三维荧光光谱图显示Tb3+在ZrO2基质中的最佳激发波长为290 nm:在290 nm波长光的激发下观察到纳米ZrO2中Tb3+的发射峰位于491,545,582 nm分别对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F4能级跃迁,以491,545nm的发射峰最强,其中经800℃焙烧处理的样品其5D4→7F6跃迁发射与5D4→7F5跃迁发射强度几乎相同,说明该法制备的纳米ZrO2:Tb3+中5D4→7F6跃迁发射增强,使Tb3+发光的蓝色成分增加了.  相似文献   

6.
Sr2SiO4∶Dy3+材料制备及发光特性   总被引:2,自引:1,他引:1  
采用高温固相法制备了Sr2SiO4∶Dy3+发光材料. 在365 nm紫外光激发下, 测得Sr2SiO4∶Dy3+材料的发射光谱为一个多峰宽谱, 主峰分别为486, 575和665 nm; 监测575 nm的发射峰, 所得材料的激发光谱为一个多峰宽谱, 主峰分别为331, 361, 371, 397, 435, 461和478 nm. 研究了Dy3+掺杂浓度对Sr2SiO4∶Dy3+材料发射光谱强度的影响. 研究结果显示, 随着Dy3+浓度的增大, 黄、蓝发射峰比值(Y/B)也逐渐增大; 随着Dy3+浓度的增大, 575 nm发射峰强度先增大后减小. 加入电荷补偿剂Li+, Na+和K+均提高了Sr2SiO4∶Dy3+材料的发射光谱强度, 其中以Li+的情况最为明显.  相似文献   

7.
纳米晶ZrO2:Sm3+的制备与发光性质研究   总被引:11,自引:1,他引:11  
用化学共沉淀法制备了Sm3 掺杂浓度不同、煅烧温度不同的纳米晶ZrO2:Sm3 系列发光粉体,所制备的粉体均具有Sm3 离子特征强室温荧光发射.通过XRD分析发现:经600℃煅烧2 h后制备的纳米晶ZrO2:Sm3 是四方相结构;经800℃煅烧2 h得到的样品,以四方相为主,有少量单斜相;经950℃煅烧2 h后得到的样品,以单斜相为主,四方相的比例较小.不同煅烧温度下样品发光性质研究表明:因经不同温度煅烧制备的样品所处晶体场环境不同,发光中心也不同,经800和950℃煅烧的样品中稀土离子占据两种不同的格位,其一为四方相格位,其二是单斜相格位;ZrO2基质与Sm3 之间有能量传递,单斜相结构更有利于能量传递.荧光强度与掺Sm3 浓度关系研究表明:荧光强度先随Sm3 浓度提高而增强,在浓度达0.7%(摩尔分数)时达到最大,然后又随之降低.  相似文献   

8.
采用高温固相反应法在还原气氛下制备了Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉。利用X射线衍射仪、荧光光谱仪和紫外可见分光光度计对样品的晶体结构、激发光谱、发射光谱与荧光衰减寿命以及漫反射光谱进行测试分析。实验结果表明:所制得的样品为单一相的Li2SrSiO4晶体结构化合物。Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉的激发光谱均呈现出宽激发带,其中最强的激发峰位于408 nm左右。在此波长激发下可得到峰值位于570 nm左右的宽波段单峰发射光谱,其对应于Eu2+离子4f65d1→4f7电子跃迁。La3+掺杂Li2SrSiO4:Eu2+荧光粉基质产生了晶格缺陷[2La·Sr·V″Sr],其可以吸收光能并将能量传递给发光中心离子Eu2+,进而增强Li2Sr0.995SiO4:0.005Eu2+荧光粉的发光强度。漫反射光谱和荧光衰减寿命测试结果也证实La3+掺杂能够增加Eu2+的激发态吸收能量,延长发光中心Eu2+离子荧光衰减寿命。  相似文献   

9.
用低温溶剂热法以乙二醇为溶剂合成了Er3+和Yb3+共掺的In2O3纳米晶。用X射线衍射(XRD)、透射电镜(TEM)、漫反射光谱和上转换发光光谱对样品进行了分析。XRD和TEM结果表明,产物为纯的立方相In2O3结构,粒径约为30 nm;漫反射光谱显示了In2O3∶Er3+,Yb3+纳米晶在522、653和975 nm附近有3个吸收带;在980 nm近红外光激发下,样品发射出中心波长为525及555 nm的绿光和662 nm的红光,分别对应于Er3+的2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2跃迁;研究了Er3+和Yb3+离子的不同掺杂浓度对发光强度的影响,确定了Yb3+和Er3+离子的最佳掺杂浓度均为3%;双对数曲线显示绿光和红光的发射过程均为双光子吸收过程,对样品的上转换发光机制进行了初步讨论。  相似文献   

10.
采用熔融晶化法制备了主晶相为SrF2的Er3+-Yb3+共掺透明氟氧化物玻璃陶瓷,利用DSC、XRD、SEM、UV-Vis-NIR和荧光光谱对样品的结构、形貌、发光性能进行了测试与表征。研究表明:该体系玻璃最佳热处理温度为620℃,最佳热处理时间为2 h,并讨论了Yb3+不同掺杂浓度对Er3+-Yb3+共掺玻璃陶瓷样品上转换发光性能的影响,确定Er3+-Yb3+最佳掺杂浓度比为1:7,同时观察到了明亮的绿光(522,540 nm)和较弱的红光(656 nm),对Er3+和Yb3+之间的能量传递过程进行了讨论。  相似文献   

11.
采用高温熔融法制备Eu3+?Tb3+共掺杂SiO2?B2O3?Na2O?Y2O3?P2O5前驱体玻璃。对前驱体玻璃粉末进行差示扫描量热(DSC)分析,确定玻璃陶瓷样品的热处理温度。前驱体玻璃热处理后,采用X射线衍射(XRD)和扫描电镜(SEM)分析可知前驱体玻璃中有Na3.6Y1.8(PO4)3晶粒析出。利用荧光光谱对玻璃陶瓷样品的发光性能进行表征,同时分析了Tb3+离子的荧光衰减曲线,确定Eu3+、Tb3+离子的发光机理以及能量传递过程。通过对Eu3+?Tb3+共掺杂玻璃陶瓷样品的发射光谱采集并用色坐标软件和色温计算程序,获得玻璃陶瓷样品的色坐标和相关色温。  相似文献   

12.
采用脉冲激光沉积(PLD)法在Si(111)衬底上制备了Eu3+,Li+共掺杂的ZnO薄膜,分别在450,500,550和600℃条件下进行退火,退火气氛为真空。利用X射线衍射(XRD)仪和荧光分光光度计研究了退火温度对薄膜结构和光致发光(PL)的影响。研究结果表明,Eu3+,Li+共掺杂的ZnO薄膜具有c轴择优取向,Eu3+,Li+没有单独形成结晶的氧化物,均以离子形式掺入ZnO晶格中。PL谱中有较宽的ZnO基质缺陷发光,ZnO基质与稀土Eu3+之间存在能量传递,但没有有效的能量传递。随着退火温度的增加,薄膜发光先增强后减弱,退火温度为550℃时发光最强。当用395 nm的激发光激发样品时,仅观察到稀土Eu3+在594 nm附近的特征发光峰,但发光强度随退火温度变化不明显。  相似文献   

13.
卜芃  李宏亮 《应用化学》2023,(3):374-379
近年来稀土掺杂的上转换发光材料在太阳能电池、工业照明和医学等领域的应用越来越受到重视,目前的研究主要集中于新型高效稀土上转换发光材料的开发。对于发光材料的制备,基质的选择尤为重要,钼酸盐因具有稳定的物理化学性能、低的声子能量而从众多基质中脱颖而出。本文选择钼酸盐为稀土离子掺杂的基质材料,采用水热法制备了Tm、Yb离子掺杂的NaGd(MoO4)2样品。通过改变离子掺杂的浓度,探究了NaGd(MoO4)2荧光粉的发光特性。研究表明,在980 nm激光照射下,NaGd(MO4)2∶Yb3+/Tm3+在477 nm处发射蓝色荧光,在648 nm处发射红色荧光。固定Yb3+的掺杂摩尔分数为6%,改变Tm3+的掺杂摩尔分数分别为0、0.5%、1%和2%时,发现随着Tm3+掺杂摩尔分数的增加,477 nm处的发射峰的强度先升高后降低,当Tm3+  相似文献   

14.
用水热法制备了Dy3+单掺及Dy3+,Er3+双掺GdVO4纳米荧光粉,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FTIR)和荧光(FL)光谱对合成样品的结构、形貌和发光性能进行表征;探讨了Dy3+掺杂浓度、络合剂对GdVO4:Dy3+纳米晶的结构、形貌和发光性能的影响;考察了不同波长的近红外光和紫外光激发的GdVO4:Dy3+,Er3+,得到不同颜色的上转换和下转换荧光光谱。以760~830 nm近红外光和210~380 nm紫外光激发GdVO4:Dy3+纳米晶,可获得Dy3+蓝绿色双模发光;其中蓝光来自于Dy3+离子的4F9/2→6H15/2跃迁,绿光由Dy3+离子4F9/2→6H13/2跃迁产生。  相似文献   

15.
采用微波辅助法合成了蓝-绿色荧光粉Li2CaSiO4∶Eu2+,该荧光粉能很好的与紫外光及蓝光LED匹配。分别采用X射线衍射(XRD)、扫描电镜(SEM)和激发-发射光谱(PLE/PL)对样品进行了表征。X射线衍射数据与标准卡片PDF#27-290很好吻合。扫描电镜测试表明样品粒径在2~5μm。在紫外光和蓝光激发下,Li2CaSiO4∶1%Eu2+发射主峰位于478 nm,对应于Eu2+的t2g→8S7/2电子跃迁,半高峰宽31 nm。样品发光性能与Eu2+掺杂浓度有关,且Eu2+的最佳掺杂浓度为1%。合成的样品色坐标为(0.09,0.24),可作为白光LED用蓝-绿色荧光材料。  相似文献   

16.
采用高温固相反应法制备出针对980,1550 nm均响应的Y2O2S:Er3+,Yb3+红外上转换发光材料。通过正交实验研究了稀土掺杂浓度、灼烧温度、灼烧时间、助熔剂用量等对产物发光性能影响的主次关系,并确定出最佳配比和制备工艺参数。采用X射线粉末衍射仪、荧光分光光度计等手段对样品的物相及发光性能进行了测试与表征。综合考虑样品的双波长响应效果,确定样品的最佳配方为A4B3C1D3E2(即Er3+浓度10%,Yb3+浓度7.5%,1100℃,5 h,助熔剂用量为质量比m(Y2O3)∶m(S)∶m(Na2CO3)=10∶3∶2)。样品为六方晶系Y2O2S结构,Er3+,Yb3+的引入未改变晶体结构。在980和1550 nm激发下,样品发出源于Er3+的2H11/2→4I15/2,4S3/2→4I15/2跃迁的绿光(520~570nm)和4F9/2→4I15/2跃迁的红光(650~680 nm)。  相似文献   

17.
采用熔盐法合成了YVO4∶Sm3+红色发光材料. 用X射线粉末衍射对其结构进行表征, 证实样品为具有锆石结构的YVO4相; 测定了样品的激发与发射光谱; 分析了不同的掺杂浓度和烧结温度对样品发光强度的影响. 研究结果表明, 采用熔盐法合成的样品均可以产生Sm3+的特征发射, 但是与其它方法相比, 熔盐法合成样品位于647 nm处Sm3+的4G5/2-6H9/2发射明显得到加强, 从而使得样品发出明亮的红光, 而不是其它合成方法获得的橙色光. 当掺杂浓度为1%(摩尔分数)且在500 ℃下烧结5 h后, 熔盐法得到的YVO4∶Sm3+荧光粉的发光强度最大.  相似文献   

18.
采用沉淀法制备前驱体,通过不同温度合成了上转换发光材料Y2O2S∶Er3+,Yb3+,运用XRD,SEM和上转换发射光谱对其进行表征。结果表明,所合成的Y2O2S∶Er3+Yb3+属于六方晶系晶体,随着合成温度的升高,产物的粒径不断增大,上转换发射光强度逐渐增加。研究Y2O2S∶Er3+Yb3+的上转换发光过程,红光发射和绿光发射分别源于Er3+离子的4F9/2→4I15/2以及2H11/2→4I15/2,4S3/2→4I15/2能级跃迁。利用群论计算了晶场中Er3+离子的能级分裂数目。  相似文献   

19.
采用高温固相反应法分别合成了变价稀土镨和镱离子掺杂的绿色荧光粉[Ba(2-n-1.5x)REx]SiO4:nEu2+ (n=0.03, RE=Pr, Yb;x=0, 0.02,0.05,0.10).结果表明: 所有合成荧光粉的激发峰均为250~400 nm的宽峰, 与近紫外LED的发射光波长相匹配.发射峰位于450~550 nm之间, 是Eu2+的5d-4f跃迁的典型发射.Pr3+和Yb3+的掺入并未改变Ba2SiO4:Eu2+的相组成, 但对荧光强度的影响大, 且与掺杂元素、掺杂量和煅烧温度相关.当掺杂Pr3+和Yb3+的量为x=0.02时, 经1150 ℃煅烧所得荧光粉的发光强度分别是未掺杂时的595%和168%.证明三价稀土离子掺杂可以导致基质中的电荷缺陷而敏化Eu2+离子的发光, 而变价稀土离子的掺杂可以大大提高电荷缺陷, 导致荧光强度的进一步提高.  相似文献   

20.
采用溶胶-凝胶(Sol-gel)法制备了Li+共掺杂的Er3+-Yb3+:TiO2粉末.976 nm激光激发下在波长350~1700nm范围内观察到了紫外、蓝色、绿色和红色上转换发光和红外下转换发光.随着Li+共掺杂浓度由0增大到20mol%,Er3+-Yb3+:TiO2的紫外、可见和红外发光强度同步增强.低Li+共掺杂浓度引起的Li+固溶以及高Li+共掺杂浓度引起的相变过程相继破坏了Er3+的晶体场对称性,导致紫外、可见和红外发光显著增强.结果表明共掺杂Li+是一种提高Er3+掺杂材料发光性能的有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号