首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
采用静电纺丝技术结合高温煅烧工艺,制备了稀土铽离子掺杂的氧基磷灰石型硅酸盐[Ca2Y8(SiO4)6O2:Tb3+]荧光纳米纤维。利用XRD,FT-IR,TG-DTA,SEM,HRTEM和荧光光谱仪等分析测试手段对样品的组成、结构和性能进行了表征。结果表明:前驱体纤维经800℃煅烧4 h后,获得的Ca2Y8(SiO4)6O2:Tb3+荧光纳米纤维,属于六方晶系,P63/m空间群,其平均直径为100 nm。在245 nm的紫外光激发下,Tb3+的发射光谱由蓝光区和绿光区两部分组成,前者在382,417和438 nm处的发射峰对应于Tb3+的5D3→7FJ(J=6,5,4)跃迁;后者在489,545,590和622 nm处的发射峰对应5D4→7FJ(J=6,5,4,3)跃迁,其中以5D4→7F5(545 nm)跃迁的发射峰为最强,呈现绿光特性,Tb3+的光致发光衰减曲线符合单指数行为,其荧光寿命达2.65 ms。  相似文献   

2.
GdF3∶Eu3+/NaGdF4∶Eu3+纳米晶的水热合成及发光性质   总被引:1,自引:0,他引:1  
采用水热法,以聚乙二醇(400)为分散剂,以NaOH和HNO3溶液调节初始溶液pH值,合成GdF3∶Eu3+和NaGdF4∶Eu3+纳米晶。XRD和SEM结果表明:在酸性溶液(pH=3,5)、中性溶液(pH=7)和碱性溶液(pH=9)中,分别获得具有正交结构的GdF3∶Eu3+纳米晶,GdF3∶Eu3+和NaGdF4∶Eu3+混合晶,六方结构NaGdF4∶Eu3+棒状微米晶。根据Scherrer公式估算pH=3和pH=5时制备纳米晶的一次性粒径分别为49和28 nm。样品的发射光谱结果表明:特征发射峰来自于5D2、5D1、5D0到7FJ跃迁。在主晶相为GdF3样品中,主发射峰来自于Eu3+的5D0→7F1的磁偶极跃迁;晶相为NaGdF4样品的主发射峰来自于Eu3+的5D0→7F2电偶极跃迁。5D0→7F1和5D0→7F2跃迁发射相对强度比值显示:Eu3+在NaGdF4晶体中的格位对称性下降。激发光谱显示出Gd3+和Eu3+具有较好的能量传递。  相似文献   

3.
采用高温固相法成功制备了KNaCa2(PO4)2:Tb3+绿色荧光粉,并研究了其发光性质。测量了其激发和发射光谱,样品发射峰位于418,440,492,545,586,622 nm,分别对应Tb3+的5 D3→7 F5,5 D3→7 F4,5 D4→7 F6,5 D4→7 F5,5 D4→7 F4,5 D4→7 F3能级跃迁,主发射峰位于545 nm。主激发峰位于350~390 nm之间,属于4f→4f电子跃迁吸收,与InGaN管芯匹配。确定了在KNaCa2(PO4)2基质中Tb3+浓度对其发光强度的影响及其自身浓度猝灭机制。研究了不同电荷补偿剂对KNaCa2(PO4)2:Tb3+材料发光的影响,其中Li+离子改善其发光强度最为明显。  相似文献   

4.
以尿素为燃烧剂,乙二醇为分散剂采用燃烧法制备了Gd3Ga5O12∶Eu3+纳米晶。利用X射线衍射、电镜和荧光光谱对前驱体和热处理后样品的结构、形貌和发光性能进行了表征。XRD结果表明:700℃热处理2 h即可获得立方结构Gd3Ga5O12∶Eu3+纳米晶。根据Scherrer公式估算经700℃和900℃热处理2 h获得的纳米晶的一次性粒径分别为28 nm和42 nm。发射光谱和激发光谱的结果表明:特征发射峰来自于5D0-7FJ跃迁,而来自于Eu3+的5D0→7F1的磁偶极跃迁发射最强;宽激发带主要来自于Eu-O电荷迁移带和Gd3Ga5O12基质吸收。发射强度和激发强度随热处理温度的提高而增强。  相似文献   

5.
采用柠檬酸燃烧法制备了稀土TB3 掺杂的CaLa1-xAl3O7:xTb3 发光材料的前驱粉末,在低于700℃退火处理时,得到非晶态样品,而高于800℃退火处理后为纯相的CaLa1-xAl3O7:xTb3 粉末样品.通过三维荧光光谱、激发光谱和发射光谱研究了Tb3 在CaLaAl3O7基质中的发光性能及Tb3 掺杂量、退火温度和柠檬酸与金属离子的配比等对发光强度的影响.结果显示.非晶态和晶态CaLa1-xAl3O7:xTb3 品都可发光,在240 nm波长光的激发下,CaLaAl3O7:Tb3 粉体产生Tb3 的特征发射峰,归属于5D4-7FJ(J=6,5,4,3)跃迁,主发射峰位置均在543 nm处(5D4-7F5跃迁),随着粉末逐渐成相5D4-7F5跃迁明显增强.  相似文献   

6.
CaMoO4∶Eu3+发光材料的制备和发光性质的研究   总被引:2,自引:0,他引:2  
用共沉淀法与高温焙烧法制备了样品CaMoO4:Eu3+.TG-DTA谱图表明:800℃时,样品吸收的能量最大,即形成稳定的CaMoO4:Eu3+结构.用XRD谱图进一步分析表明:800℃时,样品CaMoO4:Eu3+已形成CaMoO4的白钨矿结构.由于2个Eu3+取代3个Ca2+,导致了晶体产生微小的晶体缺陷,从而形成具有p-n结的半导体.经过激发和发射谱图的测试发现:这种缺陷结构不但可以使Eu3+禁戒的4f电子发生跃迁,而且可以使MoO42-的能量高效地传递给Eu3+.尤其使与MoO42-的发射特征峰(488 nm)部分重叠的Eu3+(465 nm)的7F0→5D2电子跃迁得到了极大的加强,进而在λex=465 nm的发射谱图中,自激活荧光体MoO42-的发射强度被大大减弱甚至猝灭,而Eu3+的5D0→7F2(612 nm)跃迁的红光发光强度被大大增强,使该材料成为有潜在应用价值的发光材料.  相似文献   

7.
采用水热法,以聚乙二醇(400)为分散剂,以NaOH和HNO3溶液调节初始溶液pH值,合成GdF3∶Eu3+和NaGdF4∶Eu3+纳米晶。XRD和SEM结果表明:在酸性溶液(pH=3,5)、中性溶液(pH=7)和碱性溶液(pH=9)中,分别获得具有正交结构的GdF3∶Eu3+纳米晶,GdF3∶Eu3+和NaGdF4∶Eu3+混合晶,六方结构NaGdF4∶Eu3+棒状微米晶。根据Scherrer公式估算pH=3和pH=5时制备纳米晶的一次性粒径分别为49和28 nm。样品的发射光谱结果表明:特征发射峰来自于5D2、5D1、5D0到7FJ跃迁。在主晶相为GdF3样品中,主发射峰来自于Eu3+的5D0→7F1的磁偶极跃迁;晶相为NaGdF4样品的主发射峰来自于Eu3+的5D0→7F2电偶极跃迁。5D0→7F1和5D0→7F2跃迁发射相对强度比值显示:Eu3+在NaGdF4晶体中的格位对称性下降。激发光谱显示出Gd3+和Eu3+具有较好的能量传递。  相似文献   

8.
采用高温固相法合成了Ba2-xB2O5:xTb3+绿色荧光粉。XRD图谱表明合成物质为纯相的Ba2B2O5晶体。该样品在256 nm(4f8→4f75d1)处有最强激发;有4个发射峰,分别位于489 nm(5D4→7F6),545 nm(5D4→7F5),585 nm(5D4→7F4)和622 nm(5D4→7F3);其中在545 nm处有最强发射。随着Tb3+掺杂浓度的不同,激发峰与发射峰的强度先增大后减小,当x=0.7时最佳。研究了电荷补偿剂Na+对发光性能的影响,样品的发射光谱强度随Na+掺杂浓度的增大而增大,当掺杂浓度达到或超过Tb3+浓度后发射光谱强度下降。  相似文献   

9.
采用静电纺丝技术将聚苯胺(PANI)和稀土配合物[Tb(BA)3phen]掺杂到高分子材料(PVP)中,制备出一类新型的具有光电双功能的Tb(BA)3phen/PANI/PVP复合纳米纤维.用扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)、荧光光谱仪及宽频介电松弛谱仪对样品进行了表征.结果表明,复合纳米纤维直径为(331±43)nm.在276 nm紫外光激发下,Tb(BA)3phen/PANI/PVP复合纳米纤维发射出主峰位于491,547和585 nm的绿光,对应Tb3+的5D4→7F6,5D4→7F5和5D4→7F4跃迁.当Tb(BA)3phen∶PANI∶PVP的质量比为15∶10∶100时,复合纳米纤维的荧光发射最强,其电导率随PANI含量的增大而升高,在PANI∶PVP为50%(wt%)时,其电导率在高频(106Hz)下达1.531×10-6S/cm.  相似文献   

10.
纳米晶ZrO2:Sm3+的制备与发光性质研究   总被引:11,自引:1,他引:11  
用化学共沉淀法制备了Sm3 掺杂浓度不同、煅烧温度不同的纳米晶ZrO2:Sm3 系列发光粉体,所制备的粉体均具有Sm3 离子特征强室温荧光发射.通过XRD分析发现:经600℃煅烧2 h后制备的纳米晶ZrO2:Sm3 是四方相结构;经800℃煅烧2 h得到的样品,以四方相为主,有少量单斜相;经950℃煅烧2 h后得到的样品,以单斜相为主,四方相的比例较小.不同煅烧温度下样品发光性质研究表明:因经不同温度煅烧制备的样品所处晶体场环境不同,发光中心也不同,经800和950℃煅烧的样品中稀土离子占据两种不同的格位,其一为四方相格位,其二是单斜相格位;ZrO2基质与Sm3 之间有能量传递,单斜相结构更有利于能量传递.荧光强度与掺Sm3 浓度关系研究表明:荧光强度先随Sm3 浓度提高而增强,在浓度达0.7%(摩尔分数)时达到最大,然后又随之降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号