首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
本文介绍了金属原子在烷基硫醇自组装单分子膜表面的再沉积行为,从理论上分析了其作用机理,归纳出了金属在自组装单层膜表面的再沉积规律。  相似文献   

2.
在4,4’-二硫联吡啶在Au表面形成自组装单分子层膜的基础上,采用表面增强拉曼散射光谱(SERS)研究了在不同pH值条件下金纳米粒子在4,4’-二硫联吡啶自组装单分子膜/Au体系表面的组装。研究结果表明,由于处于单分子膜表面的吡啶环中氮原子的质子化程度随溶液环境中pH值的变化而变化,使得金纳米粒子与单分子膜表面间的结合作用程度不同,由此会引起金纳米粒子在单分子膜表面的覆盖度存在差异,并最终导致所观测到的4-巯基吡啶自组装单分子膜的SERS光谱强度存在明显的差异。而且,令人感兴趣的是,所观测到的SERS谱峰强度随金纳米粒子组装时pH值的变化呈现出明显的规律性。结合分子结构特征的分析,初步阐明了SERS谱峰强度随pH值这一组装条件的改变而发生规律性变化的内在原因。  相似文献   

3.
CdS纳米粒子的自组装单分子膜制备研究   总被引:3,自引:0,他引:3  
利用疏基乙酸与草酸的混合自组装单分子膜成功制备了粒径分布均匀的CdS纳米粒子,并用SEM,XRD,XPS,PL对样品进行了表征。SEM表明形成在自组装单分子膜表面上的CdS纳米粒子的平均粒径约为45nm。XPS表明在自组装单分子膜表面形成了CdS纳米粒子。PL谱表明CdS纳米粒子在675nm有一峰值波长,我们认为这一发光是由表面缺陷造成的。  相似文献   

4.
用自组装技术以ω-巯基己酸(6-MHA)对金电极进行修饰。通过表面增强拉曼散射(SERS)光谱和电化学方法研究了6-MHA自组装单分子膜(SAM)在金电极表面的形成及由此引起的电极双电层电容的变化,并研究了该自组装单分子膜的结构模型及修饰电极对叶绿素的催化性能。结果表明,6-MHA在金电极表面能够形成一层自组装膜,并对叶绿素的氧化还原过程具有明显的催化作用。  相似文献   

5.
采用水相硅烷化方法,将γ-氨基丙基三乙氧基硅烷[H2N(CH2)3Si(OC2H5)3](APES)组装在石英表面,在基底表面修饰上氨基为末端的单层膜,并进一步在这种功能化的单层膜基底上组装金纳米粒子得到金纳米粒子/APES/石英的纳米复合结构。以制备的金纳米粒子自组装膜修饰石英为基底及DL-半胱胺酸为中介,利用桑色素(Morin)和DL-半胱胺酸的化学吸附作用,将桑色素间接组装在金纳米粒子自组装膜修饰石英基底表面,所构建的桑色素修饰金纳米粒子自组装膜对三苯基锡有灵敏的荧光识别作用。文章着重研究了桑色素修饰金纳米粒子自组装膜的制备以及组装条件对其荧光行为的影响,探讨了膜的响应特性及响应机理。  相似文献   

6.
硒杂环化合物(4,5-苯并苤硒脑)在金表面上的自组装   总被引:4,自引:0,他引:4  
为了寻求新的自组装单分子膜体系 ,构建新的功能膜 ,研究了具备平面型的大环共轭硒杂环化合物——— 4,5 苯并苤硒脑 (苯并 [c]硒二唑 ,简称苤硒脑 )在金表面的自组装单分子膜 .通过X射线光电子能谱 (XPS)和电化学手段对其进行表征 .XPS研究结果表明 ,自组装形成单分子膜后 ,苤硒脑分子中Se3d结合能从 5 7.4eV下降到 5 7.1eV ;表明硒杂环化合物是通过金硒键固定在金表面上的 ;电化学循环伏安法实验表明 ,金电极表面上自组装该有机硒后 ,Fe(CN) 63 -/ 4 -的氧化还原峰几乎完全消失 ;以四硼酸钠为底液 ,测得该化合物自组装在金表面上时 ,其还原电位在 - 0 .6 6V ,与在溶液中用裸金电极测得的还原峰电位基本一致 .  相似文献   

7.
通过表面增强拉曼散射(SERS)技术和密度泛函理论(DFT)研究对巯基苯甲酸自组装在电化学沉积的金和银薄膜表面的吸附行为.结果表明电化学沉积的金和银薄膜是良好的SERS活性基底. 通过对巯基苯甲酸的SERS光谱分析和DFT理论计算,以及表面选择定则,得到了对巯基苯甲酸主要通过羧基自组装在电化学沉积银膜表面,并且苯环表面可能和银表面有一倾角,对巯基苯甲酸主要通过硫原子和金表面相互作用,并且苯环平面可能和金膜表面有一个倾角  相似文献   

8.
应用缓冲层对自组装结构的作用能Er和自组装结构表面能E8 的协同作用分析了InP自组装结构在GaxIn1-xP缓冲层表面的形貌变化.计算发现缓冲层组分影响自组装结构的形貌.随着缓冲层与InP自组装结构之间应力的增加,InP岛倾向于拉长.理论计算还发现随着自组装结构体积的增大,自组装结构也随之拉长.而且缓冲层的参数决定了自组装结构最小能量状态时的体积大小.应用金属有机物化学气相沉积技术在GaAs衬底上生长了不同的InP/GaInP体系,并对实验得到的自组装体系形貌进行了分析.实验结果证实了以上的理论分析.  相似文献   

9.
表面增强拉曼光谱(SERS)是一种具有超灵敏检测能力的谱学技术,可以在单分子水平上检测分子结构的动态变化过程。烷基硫醇的自组装膜是一类典型的类晶态有序结构薄膜,在仿生、材料、电子和化学等领域有着重要的应用,越来越受到人们的关注。本文利用SERS对正己硫醇(hexanethiol,HT)分子在银基底上的吸附和组装过程进行研究,对HT的拉曼和自组装膜SERS光谱进行了指认。根据C-S,C-C和CH3键结构的反式和旁式的特征光谱信息,研究HT吸附在银纳米粒子表面的构象,以及自组装膜结构的有序性。研究了吸附时间和浓度两个因素对成膜规律产生的影响。实验结果表明,当HT溶液浓度较高时,HT单层膜成膜速率较快,且有序性较好;当HT溶液浓度较低时,HT单层膜成膜速率较慢,且有序性较差。这一研究结果对成膜动力学以及烷基硫醇的有序单层膜的制备具有重要的指导意义,为基于烷基硫醇的自组装单层膜在防腐、器件和生物方面的应用奠定了基础。  相似文献   

10.
利用机械-化学方法同时实现硅表面的图形化和功能化. 在芳香烃重氮盐(C6H5N2BF4)中用金刚石刀具刻划单晶硅(100),使单晶硅表面的Si-O键断裂,形成硅的自由基,进而它们与溶液中含有的有机分子共价结合以形成自组装单层膜. 用原子力显微镜对自组装前后的表面形貌进行表征,用飞行时间二次离子质谱和红外光谱对自组装单层膜进行检测和分析,通过确认C6H5离子的存在证明自组装单层  相似文献   

11.
Double-ended alkanedithiols, 1,9-nonanedithiol and 1,5-pentanedithiol, formed self-assembled monolayers (SAMs) on Au(l11) substrates and were used to adsorb silver ions from an ethanolic solution of silver nitrate and formed Ag–dithiol–Au multilayer structures. Ellipsometry, contact angle measurement and X-ray photoelectron spectroscopy (XPS) confirmed that the alkanedithiol molecules formed SAMs with only one-ended thiol groups attached to the Au substrates, which was supported by molecular mechanics calculation. XPS and X-ray Auger electron spectroscopy (XAES) indicated that silver ions were deposited onto the SAMs from the solution by the chemical reaction of silver nitrate with another-ended thiol groups of the SAMs. Atomic force microscopy (AFM) was used to observe SAMs and multilayer structures. Received: 20 January 2000 / Accepted: 18 April 2000 / Published online: 9 August 2000  相似文献   

12.
The adsorption of metal ions, a type of surface reaction on binary mixed self-assembled monolayers (SAMs) on a gold surface composed of 1,6-hexanedithiol (HDT) with 11-mercaptoundecanoic acid (MUA), was monitored by in situ surface plasmon resonance (SPR) measurements. The differential SPR reflectance (ΔR) enables the kinetics of adsorption of Pt2+ on the mixed SAMs to be investigated. Unlike single HDT SAM, kinetic analyses of the mixed SAMs showed that the rate of adsorption of Pt2+ was enhanced and that it was highly dependent on the fraction of MUA present. These SPR measurements suggest that the adsorption rate of metal ions can be readily manipulated simply by using mixed SAMs.  相似文献   

13.
A photolithographic technique was successfully employed to generate micropatterns of gold and copper by using self-assembled monolayer (SAMs) as resist materials. Copper patterns were successfully prepared from SAMs of 11-mercaptoundecanoic acid (MUA) and dodecanethiol (DDT) on Cu after UV irradiation followed by etching but gold patterns were prepared only from the SAM of MUA and not from the SAM of DDT, which revealed the difference of photooxidation of the metal–sulfur bond on SAMs. However, the maximum resolution of the pattern was about 1.0 μm on gold and 5.0 μm on copper. This may be due to lower quality packing of SAM on copper than gold. Ellipsometric and cyclovoltammetric observation of SAMs during the UV irradiation indicated the gradual removal of SAMs on copper and gold. Photopatterning of gold and copper by using SAM is more compatible with the current microelectronics process and is complementary to the microcontact printing technique.  相似文献   

14.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is utilized to investigate the behavior of vapor-deposited K, Au and Ti atoms on several alkanethiol self-assembled monolayers (SAM). The goals are to acquire information about chemical reactions between metal atoms and surface organic functional groups, penetration of metal atoms through the SAMs, growth modes of metal overlayers on top of the SAMs and damage of organic molecules. It is found that appearance of new characteristic peaks and disappearance of initial peaks may indicate chemical reactions or decomposition of organic molecules. The relationship between metal dose and intensity of surface organic functional group-related peaks provides information about penetration or cluster-formation of metal atoms. In addition, removing the metal overlayers by chemical etching and then characterizing samples again is a complementary approach that can reveal valuable information about the location of the metal atoms.  相似文献   

15.
We report the results of a density-functional theory study on a series of metal/organic interfaces consisting of self-assembled monolayers (SAMs) of methylthiol and mono-, di-, and tri-fluoromethylthiols, chemisorbed on the Au(1 1 1) surface. The effects of coverage density and extent of fluorination are examined. Both are found to strongly impact: (i) the component of the SAM dipole moment perpendicular to the surface; (ii) the SAM-induced work-function modification of the gold surface; and (iii) the energy-level alignments of both the highest occupied molecular levels and the molecular-signature states of the SAM with respect to the Fermi level of gold and, as a result, the ionization potential of the SAM when deposited on gold. Saturations of the effects are observed at the higher levels of fluorination and coverage.  相似文献   

16.
Patterned gold microstructures on glass or Si wafers have been fabricated by a novel method which is composed of selective electroless plating and microcontact printing. This process may be widely used for the production of fine metal patterns in printed circuits or as a substrate to form patterned SAMs. In addition, these patterned metal microstructures can be readily transferred to adhesive tape surface to fabricate flexible metal microstructure, which may be applied in all-plastic circuit.  相似文献   

17.
Self-assembled monolayers (SAMs) of alkanethiols adsorbed onto clean surfaces of face centred cubic (fcc) metals have been studied extensively for their ability to control the chemical functionality of the surface and as a means of preventing the oxidation and corrosion of the substrate metal. However, in many cases it has been found that on reactive substrates such as copper, it is difficult to prepare SAMs without the incorporation of some oxygen into the structure. In this work, self-assembled monolayers of octadecanethiol (ODT) were formed on copper foil substrates using a series of etching treatments to remove the native oxide layer prior to deposition of the ODT coating from a modified solution. X-ray photoelectron spectroscopy was used to analyse the SAMs and showed that monolayers with no detectable oxygen content could be produced. The effect of exposing the samples to air at different temperatures was monitored to examine the rate of the oxidation process, which was found to vary strongly with temperature. Samples stored at room temperature were found to oxidise relatively quickly, while those kept in a refrigerator were slower. Storing samples in a freezer dramatically reduced the oxidation of the copper, such that samples kept for 10 weeks still did not show any clear evidence of oxygen incorporation.  相似文献   

18.
Combining functional organic self-assembled monolayers (SAMs) with conventional semiconductor materials is a key step in the development of integrated electronics-based devices. T-BAG (Tethering by Aggregation and Growth) has been shown to be a simple and reliable method to grow SAMs of alkylphosphonates on oxide surfaces. However, distinguishing SAMs from ultra-thin multilayers is a challenge for most conventional surface characterization techniques.Self-assembled films of octadecylphosphonic acid (ODPA) were deposited on oxide-covered silicon coupons, converted to the corresponding phosphonates, and characterized by high resolution angularly resolved X-ray photoelectron spectroscopy (XPS). It was our goal to distinguish among different bonding configurations for phosphorous in the phosphonate head groups, namely, mono-dentate, bi-dentate or tri-dentate interactions with the oxide surface, as well as to assess quantitatively the near-surface layer composition.We also present an innovative method that allows us to distinguish between monolayer and multilayer films of ODPA on silicon oxide surfaces. This method is based on differential surface charging effects in XPS. It was found that variation in the ODPA film thickness causes differential responses of various spectral characteristics to an electrical bias applied to the sample during XPS measurements. Both positive and negative applied biases were found to affect the carbon core-level (C1s) line-shape and intensity in the case of the multilayer ODPA film, whereas line-shapes and intensities of all XPS lines measured for the monolayer film were unaffected by the application of a dc bias in the ±30 V range.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号