首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from weakly interacting massive particles (WIMPs) with masses below ~10 GeV/c(2). This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c(2) and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.  相似文献   

2.
RUPAK MAHAPATRA 《Pramana》2012,79(5):1045-1057
Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle physics combined with astrophysical measurements of the abundance gives rise to a dark matter candidate called weakly interacting massive particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector-based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper reviews currently available major technologies being pursued by various collaborations, with special emphasis on the cryogenic Ge detector technology used by the Cryogenic Dark Matter Search Collaboration (CDMS).  相似文献   

3.
We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 (12) kg d for the Ge (Si) targets after cuts, averaged over recoil energies 10-100 keV for a weakly interacting massive particle (WIMP) mass of 60 GeV/c2. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10(-43) cm2 from Ge and 3 x 10(-42) cm2 from Si, for a WIMP mass of 60 GeV/c2. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results and constrains predictions of supersymmetric models.  相似文献   

4.
The latest results obtained by the EDELWEISS WIMP (weakly interacting massive particles) direct detection experiment using three heat-and-ionization 320-g germanium bolometers are given. Presently the most sensitive WIMP direct detection experiment for WIMP mass >30 GeV, EDELWEISSI is testing a first region of SUSY models compatible with accelerator constraints. The status and main characteristics of EDELWEISS-II, involving in a first stage 28 germanium bolometers and able to accommodate up to 120 detectors, are briefly presented, together with neutron background estimates.  相似文献   

5.
We present a review of existing and planned dark matter direct detection experiments. The emphasis is on principle limitations for this detection technique and resulting consequences for future projects. We argue that the near future experiments, CDMS and HDMS, will give such stringent limits on WIMP–nucleon elastic cross sections that the next round of experiments will have to be either massive direction–sensitive detectors or massive ton–scale detectors with almost zero background. Candidate experiments with these requirements are shortly introduced like the newly announced GENIUS proposal. We also shortly discuss the implications of WIMP search results for accelerator experiments and vice versa. Received: 16 April 1998  相似文献   

6.
The EDELWEISS-II experiment is aimed at direct detection of weakly interacting massive particles (WIMP) considered as main candidates for the role of nonbarion dark matter. In the experiment, a search for rare WIMP-Ge scattering events is performed using HPGe-detectors-bolometers at a temperature of 20 mK. Because of different ionization losses of recoil nuclei and electrons, the use of detectors allowing simultaneous measurement of phonon and ionization signals enables background events to be suppressed very efficiently. To suppress actively the remained source of events simulating the WIMP signature, namely, the surface events with incomplete charge collection, detectors with coplanar ring electrodes have been developed for the EDELWEISS-II facility. The experimental coefficient of suppression of all EDELWEISS-II background components with the help of calibration measurements allows 3500 kg⋅day statistics to be accumulated with the expected zero level of the background events in the region of search for the WIMP. This enables the spinindependent WIMP-nucleon scattering events to be registered given that their cross section is greater than 10-45 cm2 (10-9 pb) predicted by a wide class of the SUSY models.  相似文献   

7.
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.  相似文献   

8.
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10??? cm2 for 55 GeV/c2 WIMPs at 90% confidence level. Below 20 GeV/c2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.  相似文献   

9.
We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.  相似文献   

10.
New limits are presented on the cross section for weakly interacting massive particle (WIMP) nucleon scattering in the KIMS CsI(T?) detector array at the Yangyang Underground Laboratory. The exposure used for these results is 24?524.3 kg·days. Nuclei recoiling from WIMP interactions are identified by a pulse shape discrimination method. A low energy background due to alpha emitters on the crystal surfaces is identified and taken into account in the analysis. The detected numbers of nuclear recoils are consistent with zero and 90% confidence level upper limits on the WIMP interaction rates are set for electron equivalent energies from 3 to 11 keV. The 90% upper limit of the nuclear recoil event rate for 3.6-5.8 keV corresponding to 2-4 keV in NaI(T?) is 0.0098 counts/kg/keV/day, which is below the annual modulation amplitude reported by DAMA. This is incompatible with interpretations that enhance the modulation amplitude such as inelastic dark matter models. We establish the most stringent cross section limits on spin-dependent WIMP-proton elastic scattering for the WIMP masses greater than 20 GeV/c2.  相似文献   

11.
一个位于韩国江原道襄阳郡地下实验室的暗物质WIMP探测实验中, 采用了低能量阈高纯锗探测器, 带有碘化铯晶体反符合探测器作为主动屏蔽体. 整个系统设置和能量标定已经完成, 并且已经积累了约155d的本底数据. 还应用外置伽玛源和中子源进行了实验, 以判断本底的来源. 介绍了数据的分析和初步结果, 并给出了实验诱人的前景.  相似文献   

12.
《Physics letters. [Part B]》2011,702(5):329-335
The EDELWEISS-II Collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge collection electrodes with an interleaved geometry enables the efficient rejection of γ-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4×10−8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.  相似文献   

13.
We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg d of Ge net exposure after cuts for recoil energies between 10 and 100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. Using the standard dark-matter halo and nuclear-physics WIMP model, these data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross section for all WIMP masses above 15 GeV/c2, ruling out a significant range of neutralino supersymmetric models. The minimum of this limit curve at the 90% C.L. is 4 x 10(-43) cm2 at a WIMP mass of 60 GeV/c2.  相似文献   

14.
Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20 GeV/c2.  相似文献   

15.
Weakly interacting massive particles (WIMPs) can solve both the solar neutrino and dark matter problems. In this paper we show that a fourth generation Dirac neutrino with mass between 4–10 GeV, in conjunction with the standard, albeit light, Higgs with mass of order 400 MeV, is a candidate WIMP. We describe both the astrophysical and particle physics consequences of this new WIMP.  相似文献   

16.
KIMS is a group aiming at the search for WIMP. In WIMP search experiment, the muon is one important background. We measure the muon flux in Yangyang laboratory where is located at 700m underground. The structure and performance test of muon detector is described. The analysis on muon hit position and angle distribution has been performed. The simulations of muon flux have been done. The muon flux in the laboratory is found to be about (7.0±0.4)×10-8/s/cm2/sr.  相似文献   

17.
The launch of the gamma-ray telescope Fermi Large Area Telescope (Fermi-LAT) started a pivotal period in indirect detection of dark matter. By outperforming expectations, for the first time a robust and stringent test of the paradigm of weakly interacting massive particles (WIMPs) is within reach. In this paper, we discuss astrophysical targets for WIMP detection and the challenges they present, review the analysis tools which have been employed to tackle these challenges, and summarize the status of constraints on and the claimed detections in the WIMP parameter space. Methods and results will be discussed in comparison to Imaging Air Cherenkov Telescopes. We also provide an outlook on short term and longer term developments.  相似文献   

18.
The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, weakly interacting massive particles (WIMPs) scatter into an excited state, split from the ground state by an energy δ comparable to the available kinetic energy of a galactic WIMP. We note that for large splittings δ the dominant scattering at DAMA can occur off of thallium nuclei, with A~205, which are present as a dopant at the 10(-3) level in NaI(Tl) crystals. For a WIMP mass mχ≈100 GeV/c2 and δ≈200 keV, we find a region in δ-mχ-parameter space which is consistent with all experiments. These parameters, in particular, can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.  相似文献   

19.
We present a new Germanium Dark Matter Experiment. It consists of two HPGe-Detectors which are run in a unique configuration. The anticoincidence between the two detectors will further reduce the background that we achieve now in the Heidelberg-Moscow-Experiment and will allow to improve WIMP cross section limits to a level comparable to planned cryogenic experiments. This should also allow to test recently claimed positive evidence for dark matter by the DAMA experiment.We show first detector performances from the test period in the Heidelberg Low Level Laboratory and give a preliminary estimation for the background reduction efficiency. The HDMS experiment in being built up now in the Gran Sasso Underground Laboratory and will start taking data by the end of this year.For a substantial improvement of the WIMP-nucleon cross section limits, future dark matter experiments will have to be either massive direction-sensitive detectors or massive ton-scale detectors with almost zero background. A proposal for a high mass (1 ton) Ge experiment with a much further reduced background is the Heidelberg GENIUS experiment. GENIUS will be able to give a WIMP limit of the order 0.02 counts/day/kg and additionally to look for the annual modulation WIMP-signature by using raw data without subtraction.  相似文献   

20.
Physics of Atomic Nuclei - NEWSdm [Nuclear Emulsions for WIMP (weakly interacting massive particles) Search—directional measurement] is a new international experiment in which a photoemulsion...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号