首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
交联核壳结构PBA/PS和PBA/PMMA纳米微球的制备与应用   总被引:1,自引:0,他引:1  
考察了聚丙烯酸丁酯/聚苯乙烯(PBA/PS)以及聚丙烯酸丁酯/聚甲基丙烯酸甲酯(PBA/PMMA)交联核壳结构纳米高分子微球的制备方法,并对其在尼龙复合材料中的应用进行了初步研究.结果表明,通过交联剂的引入使粒子核层和壳层内部均形成了高度交联的结构,可以限制亲水性较小的聚苯乙烯(PS)壳层向粒子内部迁移的趋势;制备出的微球平均粒径为40~50 nm,粒径分布很窄.采用饥饿态加料方式加入第二单体不仅可以使微球具有较高的产率和凝胶率,而且可以使其具有更理想的核壳结构和更窄的粒径分布.此外,将合成出的PBA/PMMA核壳粒子对尼龙6基体进行复合的结果表明,由于该微球表面与尼龙6基体之间具有较强的界面相互作用且微球具有较大的形变能力,可以在基体中形成良好的分散,在保持材料强度的同时有效地提高了其刚性和韧性.  相似文献   

2.
提出了一种通过乳化剂复配简便制备表面包覆率可调的核-壳复合微球的方法.高效液相色谱和zeta电位测试结果表明,核粒子和壳粒子在分散混合过程中出现了乳化剂吸附和脱附的再平衡现象,从核粒子表面游离的阳离子乳化剂与壳粒子表面的阴离子乳化剂发生电性中和作用,导致核、壳2种粒子的zeta电位值互相接近,基于静电作用的异相凝聚失效.进一步研究发现,在保持核粒子分散液中乳化剂总量为1 wt%的前提下,添加非离子乳化剂既可以确保分散体系的稳定性,又可以调控阳离子乳化剂的游离量,成功实现核-壳复合微球的异相凝聚.由此可见,通过调节复配乳化剂中阳离子与非离子乳化剂的配比,可简便地调控复合微球的表面包覆率.还探讨了异相凝聚体系中pH值和电解质浓度对核-壳复合微球表面包覆率的影响.  相似文献   

3.
利用硅烷偶联剂引发法制备核壳结构金属铝纳米粒子(Al NPs)@聚合物, 并研究了聚合反应时间和单体浓度对核壳结构尺寸的影响. 首先合成了硅烷偶联引发剂{2-溴-2-甲基-[3-(三甲氧基硅基)丙基]丙酰胺}, 并通过在甲苯中回流的方法, 将其锚定在金属铝纳米粒子表面. 然后, 在粒子表面引发甲基丙烯酸甲酯的原子转移自由基聚合, 形成聚甲基丙烯酸甲酯(PMMA)壳层. 通过核磁共振波谱仪(NMR)和傅里叶变换红外光谱仪 (FTIR)证明了引发剂和PMMA的成功接枝. 透射电子显微镜(TEM)图像表明, PMMA改性后的金属铝纳米粒子的尺寸和形貌基本不变, 且被厚度约为15 nm聚合物壳层完整均匀地包覆. 此外, 利用动态光散射(DLS)进一步揭示了聚合时间和单体浓度对核壳结构水合直径(Dh)的影响, 发现延长聚合时间或增加单体浓度均可显著提高核壳结构尺寸.  相似文献   

4.
首先用聚乙烯亚胺(PEI)对粒径为360 nm的单分散无皂聚苯乙烯(PSt)乳胶粒进行修饰,得到表面荷正电的PSt种子乳液,然后将其滴加到溶有钛酸正丁酯(TBT)的乙醇与水的混合介质中,通过溶胶-凝胶(sol-gel)法制备出了核壳结构PSt/TiO2复合微球,系统研究了体系pH和TBT用量对复合微球结构形态的影响.研究表明,酸性条件不利于核壳结构PSt/TiO2复合微球的形成;当体系pH值为7.2时,可得到包覆完整、TiO2壳层厚度均一的PSt/TiO2复合微球,此后随着体系pH值的升高,包覆厚度逐渐提高;当pH值升高到11.0时,壳层厚度达到最大,但出现了包覆层不完整的复合微球.在固定聚合体系pH为8.5,EtOH/H2O质量比为100/6,表面修饰PSt种子乳液用量为0.5 g(固含量为4%)的条件下,随着TBT用量从0.01 g增加到0.16 g,复合微球壳层厚度从约0 nm逐渐增加到60 nm;当TBT用量增加到0.32 g时,壳层厚度迅速降至12nm,微球表面变得粗糙,并出现大量未包覆微粒;此后随着TBT用量的增加,包覆层厚度逐渐减少,未包覆微球逐渐增多.结果显示,当复合微球中TiO2包覆层达到一定厚度时,经煅烧后才能得到形貌完整的TiO2中空微球.  相似文献   

5.
陈强  李树亚  吴石山  沈健 《化学学报》2010,68(20):2130-2134
采用无皂乳液聚合合成的聚苯乙烯(PS)微球为模板、氨水/三乙醇胺为催化体系, 通过溶胶-凝胶方法合成了PS/TiO2(核/壳)复合微球, 然后通过煅烧制备了N掺杂、锐钛型空心TiO2微球. 在反应体系中三乙醇胺扮演双重角色, 既是TiO2生成及包覆过程的抑制剂又是空心TiO2微球的N掺杂剂. 改变氨水、三乙醇胺和钛酸正丁酯用量可控制TiO2壳的形态和尺寸. 氨水用量增加, PS/TiO2复合微球的壳表面变得粗糙|三乙醇胺用量增加, 壳表面变得光滑|钛酸正丁酯用量提高导致壳层变厚. 改变三乙醇胺用量可调节空心TiO2微球中的N掺杂量|N掺杂空心TiO2微球具有可见光响应和光催化作用.  相似文献   

6.
邹华  吴石山  沈健 《化学学报》2009,67(3):266-269
聚乙烯吡咯烷酮(PVP)功能化的聚苯乙烯(PS)粒子在SiO2包覆的同时被乙醇/氨水介质溶解, 得到了单分散空心SiO2纳米微球. 该空心SiO2纳米微球的尺寸和形态可以通过PVP, NH4OH和正硅酸乙酯(TEOS)的用量来调节. PVP用量增加导致PS粒子变小, 从而得到较小的空心SiO2纳米微球; NH4OH用量增加, 空心SiO2纳米微球表面变得粗糙; TEOS用量增加, 空心SiO2纳米微球的壳层厚度增加. 包覆(溶解)温度是控制空心SiO2纳米微球形成的最有效手段. 在70 ℃的包覆(溶解)温度下可以获得全部空心的SiO2纳米微球.  相似文献   

7.
空心微米镍球的表面改性及微波吸附性能研究   总被引:2,自引:0,他引:2  
刘曦  邓意达  沈彬  刘磊  胡文彬 《化学学报》2006,64(23):2317-2321
采用特殊的化学镀方法对已制备的空心微米镍球进行表面组装, 成功地在该镍球表面包覆了一层蜂窝状包覆钴层. 通过FESEM, TEM, XRD衍射表征了该包覆镍球, 观察到均匀包覆钴层的网眼构造和密集孔隙结构. 用BET气体吸附法、同轴线法对该镍球比表面积和微波性能进行了研究. 研究表明, 蜂窝状包覆钴层提高了粒子的比表面积, 同时表面镀钴提高了镍球的复介电常数值, 从而能增加粒子对电磁波的电介质损耗, 提高粒子在微波频率范围内对电磁波的反射吸收.  相似文献   

8.
以聚苯乙烯微球为模板, 经过原位还原和种子生长过程在聚苯乙烯微球表面包覆银(Ag)纳米粒子; 以正硅酸乙酯为硅源, 在十六烷基三甲基溴化铵的导向下实现介孔二氧化硅(mSiO2)可控包覆, 去除模板得到Ag/mSiO2空心微球. 透射电子显微镜(TEM)和氮气吸附-脱附分析结果表明, SiO2壳层厚度约为20 nm, 介孔孔径为2.1 nm, 孔道分布均匀. 进一步利用虹吸作用使对巯基苯胺(4-ATP)分子进入微球内与Ag粒子结合, 构建表面增强拉曼散射(SERS)标记材料. SERS测试结果表明, 该标记材料检测限达到10-7 mol/L, SERS增强因子达到3.7×105.  相似文献   

9.
Pickering乳滴模板法制备有机/无机杂化的核壳微球越来越引起人们的关注,主要因为该方法制备出的微球具有以无机粒子为壳层的超粒子结构(supracolloidal structure),能够赋予微球独特的功能.胶体粒子在乳滴表面自组装形成有序的球面胶体壳,得到稳定Pickering乳液,固定乳滴表面的胶体粒子来制备核壳结构的微球或者以胶体粒子为壳层的微胶囊(colloidosome).本文综述了我们课题组以Pickering乳滴模板法制备超粒子结构有机/无机杂化微胶囊包括实心微球方面的工作.我们选择具有不同性能、种类的胶体粒子以及具有不同性质和功能的核材料,采用Pickering乳滴模板法,对吸附在乳滴表面的胶体粒子用不同的固定方法制备具有不同结构和性能的微球和微胶囊,利用基于多重Pickering乳液的聚合技术制备双纳米复合的超粒子结构多核聚合物微球.  相似文献   

10.
采用分散聚合两步加料法,在成核期后向反应体系加入光引发转移终止剂(photo-iniferter)单体2-N,N-二乙基二硫代氨基甲酰氧基乙酸β-甲基丙烯酰氧基乙酯(MAEDCA)制备了核-壳单分散光敏性聚苯乙烯(PSt)微球;进一步,在甲醇介质中,利用光敏性微球在紫外光辐照下引发单体丙烯酰胺(AM)进行表面沉淀接枝聚合,制得了表面亲水、树莓状(raspberry-like)PSt/PAM微球.采用SEM及TEM观察了所得微球的结构和形貌,FTIR、UV-Vis、1H-NMR及XPS分析表明微球的photo-iniferter基团含量随MAEDCA加入量增大而提高,同时补加一定量的MAEDCA、St、AIBN、甲醇及水时所得光敏性PS微球单分散性最好;微球表面接枝PAM后变得亲水并可大量吸附Ag纳米粒子.  相似文献   

11.
A new simple method for the formation of hollow polyethersulfone (PES) microspheres was reported in this paper. Coaxial electrospraying equipment and nonsolvent precipitating bath were used to produce hollow microspheres in one step. The properties of the core solution affected the formation of hollow PES microspheres. To form hollow microspheres in one step, the core solution should be removed directly by a nonsolvent. Additionally, the core solution should also be used to occupy the internal space of microspheres and form a supporting layer at the interface between the core solution and the shell solution. The supporting layer formed by the micro-phase that was caused by the phase separation of the core or shell solution was the key factor for the formation of hollow PES microspheres. The performance of hollow microspheres produced by this method was excellent. This method provided a new simple way to form hollow polymer microspheres and can be extended to other polymers to prepare hollow microspheres in one step.  相似文献   

12.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

13.
A novel and effective method for the preparation of monodisperse CdS quantum dot‐polymer microspheres was proposed. The monodisperse hollow polymer microspheres were firstly swelled in chloroform. Then, the reaction precursor composed of CdO and sulfur, was impregnated into the hollow polymer microspheres. Subsequently, the CdS quantum dots were synthesized directly within the polymer microspheres by thermal decomposition. The morphology, structure, and fluorescence properties of CdS quantum dot‐polymer microspheres were studied by scanning electron microscope, transmission electron microscope, fluorescence microscope, and flow cytometry. The results indicate that the fluorescent CdS quantum dots are successfully synthesized in the monodisperse hollow polymer microspeheres, which provide very strong fluorescence intensity, and offer excellent photostability due to the compact structure of the polymer matrix. These CdS quantum dot‐polymer microspheres have potential applications in biotechnology and biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 751–755, 2010  相似文献   

14.
Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with movable poly(DVB-co-AA) cores were prepared by a facile route. In this approach, poly(DVB-co-AA) microspheres were first used as templates to synthesize poly(DVB-co-AA)@PAA core-shell particles with a non-crosslinked PAA shell by distillation precipitation polymerization in acetonitrile. In situ polymerization to prepare poly(DVB-co-AA)@PAA@poly(DVB-co-AA) trilayer microspheres was then developed, in which the hydrogen-bonding interaction between the carboxylic acid groups played a key role as the driving force for the formation of monodisperse trilayer structure polymer microspheres. After removal of the non-crosslinked poly(acrylic acid) (PAA) midlayer of the poly(DVB-co-AA)@PAA@poly(DVB-co-AA) microspheres in ethanol under basic conditions, poly(DVB-co-AA) hollow microspheres with movable poly(DVB-co-AA) cores were obtained. Functional poly(DVB-co-AA) cores could be released successfully when the hollow structure was destroyed. The resultant core-shell, trilayer polymer microspheres and hollow polymer microspheres with movable cores were characterized by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and Fourier transform infrared (FT-IR) spectra.  相似文献   

15.
In this communication, a novel one-pot synthetic strategy for preparing hollow PNIPAM microspheres via an interfacial polymerization approach at the interface of an inverse W/O emulsion has been proposed and demonstrated. The results show that the prepared PNIPAM microspheres have real empty core and polymer shell structure, with a size range of 1-3 mum. The hollow microspheres experienced a reversible swelling and deswelling process by mediating the temperature below and above the lower critical solution temperature (LCST) of the PNIPAM. The new approach not only provided a unique technical pathway to prepare hollow PNIPAM microspheres in situ under mild reaction conditions but also opened a platform for helping to understand the mechanism of diffusion, migration of the PNIPAM at an oil/water interface above its LCST, and the polymer layer formation mechanism as well.  相似文献   

16.
Hollow structure microspheres with composite polymeric-Laponite shells were prepared by electrostatic self-assembly of Laponite on the polymeric hollow microspheres in this work. The multilayer hydrophilic core/hydrophobic shell polymer latex particles containing carboxyl groups inside were first synthesized via seeded emulsion polymerization, followed by alkali treatment, generating polymeric hollow microspheres. Then, polyethyleneimine (PEI) and Laponite were alternately electrostatic adsorbed on the prepared polymeric hollow microspheres to form polymeric-Laponite composite hollow microspheres. It was indicated that the morphology of alkali-treated microspheres could be tuned through simply altering the dosage of alkali used in the post-treatment process. Along with the increasing of the coating layers, the zeta potential of microspheres absorbed PEI or Laponite approximately tended to be constant respectively, and the thickness of Laponite layer around the hollow microspheres increased clearly, getting more uniform and homogenous. Furthermore, the corresponding polymeric-Laponite hollow microspheres showed high pressure resistance ability compared to the polymeric hollow microspheres.  相似文献   

17.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

18.
Deng  Wei  Guo  Hua-Chao  Yu  Wei-Li  Kan  Cheng-You 《高分子科学》2018,36(1):43-48
Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile(AN) and methacrylic acid(MAA), using butyl acrylate(BA) as the shell co-monomer decreased the glass transition temperature(T_g) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH_3·H_2O than to NaOH. When the molar ratio of alkali to methacrylic acid(MR_(alkali/acid)) for Na OH ranged from 1.15 to 1.30 or MRalkali/acid for NH_3·H_2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained.  相似文献   

19.
Hollow porous magnetic microspheres with strong magnetization and controllable structure were prepared via a facile electrostatic self-assembly of the positively charged Fe(3)O(4) nanoparticles onto the surface of the negatively charged poly(N,N'-methylenebisacrylamide-co-methacrylic acid) (P(MBAAm-co-MAA)) microspheres with subsequent removal of the polymer core through calcination at high temperature. The shell thickness was facilely tuned through the ratio between Fe(3)O(4) and polymer, and the void space was conveniently changed through the size of polymer microspheres. The hollow magnetic microspheres possessed high saturation magnetization value (51.38 emu/g) and porous structure with high specific surface area (108.04 m(2)/g). Based on these properties, the drug loading and release behaviors were investigated, which indicated that the hollow magnetic microspheres exhibited a controlled release process.  相似文献   

20.
The influence of MS-VP-A9 brand hollow glass microspheres and curing temperature on the kinetics of growth of residual stresses in disperse-filled polymer composites based on DER-330 and ED-20 epoxy oligomers was considered. It was shown that the introduction of hollow glass microspheres and change of generalized parameters of structure leads to a decrease of the level of residual stresses by approximately half during curing, differing in average molecular weight, molecular-weight distribution, and content of associates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号