首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
多菌种混养预氧化难浸金矿效果的研究   总被引:3,自引:0,他引:3  
试验采用了氧化亚铁硫杆菌(简称T.f菌)、氧化硫硫杆菌(简称T.t菌)、氧化亚铁钩端螺旋菌(简称L.f菌)3种菌种,进行两菌种(即:T.t菌与L.f菌)和三菌种(即:T.f、T.t、L.f菌)组合,以不同比例配制的浸矿试验,并以单菌种(T.f和L.f菌)作对照,研究多菌种混合培养对浸矿效果的影响.通过摇瓶浸矿,氰化浸金之后,用原子吸收分光光度法测得金浸出率,结果表明:未经过生物预氧化的矿粉直接进行氰化提金,金的浸出率仅为50%,经过生物氧化预处理之后,金浸出率得到明显提高,均达到80%以上;并发现T.f、T.t、L. f三菌种混合菌浸矿效果比单菌种浸矿和两菌种浸矿效果都好,金的浸出率提高了2%-10%.  相似文献   

2.
混合高温菌浸出黄铜矿及浸出过程中微生物群落的演替   总被引:1,自引:0,他引:1  
研究3株极端嗜热古菌(金属硫叶菌,Sulfolobus metallicus JCM 9184;瑟杜生金属球菌,Metallosphaera sedula JCM 9185和万座酸菌,Acidianus manzaensis YN25)在不同起始pH值和不同温度条件下对黄铜矿的混合浸出,并对浸矿过程中混合菌群落的动态演替进行分析.结果表明:在起始pH 1.5时的铜浸出率明显高于在起始pH 2.5时的铜浸出率,而65 ℃条件下的铜浸出率高于75 ℃时的铜浸出率.利用限制性长度多态性(RFLP)分析65 ℃、起始pH 1.5条件下的微生物群落演替,结果显示:在黄铜矿的浸出前期Sulfolobus metallicus是占据优势的菌种,而到后期Acidianus manzaensis的比例则会上升,并最后取代Sulfolobus metallicus成为优势种.  相似文献   

3.
为了探明磷灰石在微生物浸出黄铜矿体系中的溶出特性及其对黄铜矿浸出的影响,选择粒径小于43μm的磷灰石与粒径小于74μm的黄铜矿以及At.f菌组成矿浆浸出体系,考察不同At.f菌接种量对于磷灰石溶出速率的影响及对黄铜矿浸出效果的影响。结果表明:浸出体系中含低浓度PO3-4可以提高铜的浸出效率;当At.f菌接种量为5%时,微生物浸出体系中磷灰石溶出的PO3-4浓度最小,为0.62 mg/L,此时黄铜矿的最终浸出率最高,达到57.4%,比PO3-4溶液浓度最高时体系的铜浸出率提高近30%。通过对微生物浸出前、后的浸渣进行扫描电镜、能谱分析和XRD分析发现,浸出后磷灰石表面浸蚀不明显,而黄铜矿表面浸蚀明显,同时浸渣中有新物质铵黄铁矾生成;磷灰石对于新生成的沉淀有一定的吸附作用,而且溶出较低浓度的PO3-4体系能提高黄铜矿的浸出。  相似文献   

4.
聚乙二醇对氧化亚铁硫杆菌浸出黄铜矿的影响   总被引:1,自引:0,他引:1  
为提高黄铜矿生物浸出率,研究聚乙二醇(PEG)对Acidithiobacillus ferrooxidans strain XZ11 Fe2+氧化活性和黄铜矿生物浸出过程的影响,并采用SEM和EDS对浸出后矿物表面形貌和相组成进行表征。结果表明:相对分子质量大于200的PEG对Acidithiobacillus ferrooxidans Fe2+氧化活性具有一定的促进作用,添加30 mg/L PEG 2000时,浸出20 d后,铜浸出量高达451.70 mg/L,较不添加FEG时提高了1.11倍;添加PEG时,黄铜矿表面的侵蚀面呈沟壑状,出现溶蚀坑,并生成Fe3+的羟基化多聚物Fe(Ⅲ)—O—OH。PEG的添加提高了浸出体系中细菌浓度和Fe3+浓度,加速了黄铜矿的溶解。  相似文献   

5.
采用微生物浸矿技术,以西部矿业黄铜矿为对象,进行了从黄铜矿中提取铜的实验研究。菌种为氧化亚铁杆菌(T.f)。先进行菌种富集制备T.f菌浸出液,用细菌摇瓶浸出法做实验,了解影响浸出率的各种技术因素。研究结果得出,西部矿业黄铜矿在一般温度(25℃)下,T.f菌浸液的起始pH值为2.5,细菌浸出效果良好,浸出率平均在40%~65%之间,最高达到67%左右。为明确了解T.f菌浸出的效果,进行了无菌化学浸出的平行实验,两组系列实验结果得出,在整个浸出过程中,有菌浸出与无菌浸出相比,前期有菌浸出占有明显优势,但在后期浸出,效果与无菌浸出相当。这是由于有菌浸出后期pH值较前期低,不利于细菌的生长繁殖,此时,浸出时应使用pH值控制器,使其pH保持在合适的范围内,就能继续高的浸出速率。  相似文献   

6.
采用混合中度嗜热微生物研究4种碳材料(人造石墨、炭黑、活性炭和碳纳米管)对黄铜矿浸出的催化作用。结果表明,添加人造石墨和活性炭能使溶液pH值降低,氧化还原电位维持在合适的范围,使浸出液中总铁、三价铁浓度和矿渣表面吸附微生物的数量增加,最终提高黄铜矿中铜的浸出率;而添加炭黑和碳纳米管能抑制浸矿微生物的生长,最终导致浸出效率降低。X射线衍射分析表明,在添加人造石墨和活性炭实验组中,黄钾铁矾和硫膜是钝化层的主要成分,但钝化层的形成不会影响黄铜矿的进一步分解。此外,人造石墨和活性炭的添加使浸出体系中游离微生物和吸附微生物的群落结构发生改变。在黄铜矿浸出末期,硫氧化茵A.caldus S1(丰度为93%~98%)成为优势菌种,而铁氧化菌L.ferriphilum YSK所占比例仅为1%~2%。  相似文献   

7.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

8.
借助于X射线光电子能谱(XPS)和红外光谱(FTIR)等测试手段,研究黄药类捕收剂对嗜酸氧化亚铁硫杆菌LD-1菌株(At.f LD-1)浸出黄铜矿的抑制机理。XPS分析结果表明,与不加浮选药剂条件下所得浸渣相比,黄药类捕收剂的作用使浸渣表面Cu 2p电子结合能增高,Fe 2p和S 2p电子结合能降低,且黄药类捕收剂对铜浸出率抑制作用的强弱与电子结合能的偏移程度成正比;FTIR研究发现,At.f LD-1菌在黄铜矿表面发生了化学吸附,黄药类捕收剂在酸性条件下生成的醇类等物质在黄铜矿表面的吸附以及对At.f LD-1菌的毒害作用,导致浸渣表面红外特征吸收峰发生了偏移。  相似文献   

9.
文摘选萃     
S.M.Mousavi等研究了几个变量对采用柱式生物反应器回收锌的影响。矿石中主要硫化矿物是闪锌矿和黄铁矿,次要矿物为黄铜矿和方铅矿。用台架规模的柱式浸出反应器进行浸出试验。反应器中接种有嗜温(酸性氧化亚铁硫杆菌)和嗜热(硫杆菌)铁氧化菌,它们分别是用Sarcheshmeh黄铜矿精矿(Kerman,伊朗)和Kooshk闪锌矿精矿(Yazd,伊朗)分离得到的。接种细菌的反应柱中,有黄钾铁矾和元素硫形成。随着溶解铁离子浓度的增大,闪锌矿的浸出速率趋向于增大。低pH范围内,溶液中细菌的显微计数趋向于升高。另外,低pH条件下,颗粒粒度降低对锌浸出影响加重。…  相似文献   

10.
元素硫对黄铜矿生物浸出行为及群落结构的影响(英文)   总被引:1,自引:0,他引:1  
研究3种典型铁/硫代谢菌—Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum及Acidithiobacillus thiooxidans混合浸出黄铜矿过程中铁/硫氧化活性、群落结构(PCR-RFLP)的变化,以及不同浓度的元素硫对其影响。结果发现,加入3.193g/L元素硫能促进细菌的表观硫氧化活性,改变浸矿体系的群落结构,并进一步影响钝化层的形成、金属离子的溶出,其浸出率(71%)较未添加硫的(67%)有一定程度的提高。而过量的元素硫会抑制铜的浸出(浸出率44%)。  相似文献   

11.
采用生物浸出和电化学测试,研究低温10℃下AcidithiobacillusferrivoransYL15对黄铜矿和斑铜矿的协同浸出过程,结合不同的电化学测试手段探究其电化学溶解和表面钝化行为。结果表明:不同矿物体系的生物浸出和电化学行为存在极大差异。协同浸出组的浸出率最高,达到了48.4%,斑铜矿的次之,且两者都远高于黄铜矿的16.4%。斑铜矿的加入降低了氧化还原电位并维持到一个适宜的范围(400~420 mV),加快了矿物的氧化。另外,通过电化学测试,发现协同浸出组的电位降低、电流升高和阻抗减小、氧化速率大幅提高。  相似文献   

12.
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans:A.ferrooxidans菌)是目前研究得最多的浸矿细菌,其能量代谢途径复杂多样。在好氧和厌氧气氛下,分别对Fe3+浸出黄铁矿及A.ferrooxidans菌对Fe3+氧化浸出黄铁矿的影响进行了研究,并且利用A.ferrooxidans菌构建微生物燃料电池,研究在不同气氛下A.ferrooxidans菌对电子传递过程的影响。结果表明:在好氧和厌氧气氛下,加菌时的黄铁矿浸出率比无菌时的分别提高了40.03%和27.76%。在好氧和厌氧气氛下,A.ferrooxidans菌均可以提高电子传递速率,进而加快氧化还原反应的进行,说明A.ferrooxidans菌在厌氧环境下,能以Fe3+为电子受体、含还原性硫的黄铁矿为电子供体来进行呼吸作用,获得生命活动所需的能量。在实验结果和前人工作的基础上提出在厌氧情况下,A.ferrooxidans菌进行呼吸作用的一条可能的路线图。  相似文献   

13.
利用混合中度嗜热微生物浸出比较研究两种不同类型的低品位铜尾矿(酸浸尾矿和铜浮选尾矿)在浸出过程中矿物学和微生物学特征的变化。结果表明:两种尾矿的浸出行为具有很大的区别。与铜浮选尾矿相比,酸浸尾矿的浸出液中氧化还原电位较低,[Fe3+]/[Fe2+]的比例和微生物菌体密度较高,导致总铜、原生硫化铜和次生硫化铜的浸出率增加。XRD结果表明,在浸出浮选尾矿中,检测到石膏和金属有机复合物,这些物质会减缓硫化矿物的氧化过程。两种尾矿浸出过程的微生物群落变化明显:酸浸尾矿浸入过程中铁氧化菌的比例高于浮选尾矿浸出的,但硫氧化菌比例低于浮选尾矿浸出的,浸出酸浸尾矿时可以检测到F. thermophilum L1,但在浸出浮选尾矿中检测不到。  相似文献   

14.
浸金会受到伴生银和多金属硫化矿的影响。采用填充床反应器研究4组矿物系统:黄铁矿-二氧化硅、黄铜矿-二氧化硅、闪锌矿-二氧化硅和辉锑矿-二氧化硅电极的电偶和钝化效果。结果表明,在电偶和钝化作用下,硫锑银矿(Ag3Sb S3)使黄铁矿中Au的浸出率分别提高到77.3%和51.2%(相对于74.6%和15.8%);在电偶和钝化作用下,闪锌矿+硫锑银矿也使金的浸出率分别提高到6.6%和51.9%(相对于1.6%和15.6%);黄铜矿+硫锑银矿使金的浸出率分别降低到38.0%和12.1%(相对于57%和14.1%);在电偶和钝化作用下,添加银矿使黄铁矿中Au的浸出率分别提高到90.6%和81.1%(相对于74.6%和15.8%);添加银矿物和闪锌矿使Au浸出率分别提高至71.1%和80.5%(相对于1.6%和15.6%);添加银矿物和黄铜矿,金的浸出率分别降低至10.2%和4.5%(相对于57%和14.1%)。硫锑银矿和辉锑矿在一起会阻碍金的溶解。硫锑银矿和添加银矿增强游离金与黄铁矿和闪锌矿伴生金的溶解,黄铜矿和辉锑矿中伴生金银阻碍了金的溶解。  相似文献   

15.
基于同步辐射X射线衍射(SR-XRD)和硫K边X射线吸收近边结构(XANES)光谱学等技术,比较研究A. manzaensis对不同晶体结构黄铜矿(α相、β相和γ相)的浸出。通过在583、773和848K热处理原始黄铜矿,获得α相、β相和γ相黄铜矿。生物浸出的结果表明,经过10 d的生物浸出,α相、β相、γ相和原始黄铜矿浸出液中[Cu~(2+)]分别为1.27、1.86、1.43和1.13 g/L,表明β相的黄铜矿比其他类型的黄铜矿更容易被A. manzaensis浸出。SR-XRD和XANES的结果表明,这4种类型黄铜矿生物浸出的残渣主要是由黄钾铁矾和黄铜矿组成,单质硫在生物浸出的初期产生。而对于β相和γ相黄铜矿生物浸出过程而言,斑铜矿在浸出的初始阶段产生,并且在第6天转化为辉铜矿。  相似文献   

16.
研究活性炭对四株典型嗜热古菌混合培养物(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis和Sulfolobus metallicus)在65°C时浸出纯黄铜矿过程中活性炭的催化作用和钝化现象的相关性。浸出实验表明,活性炭能够有效地促进黄铜矿的生物浸出和化学浸出。基于同步辐射技术的X射线衍射、铁的L-边和硫的K-边X射线吸收近边结构光谱学分析表明,在生物浸出过程中当氧化还原电位较低((27)400 mV)时,活性炭能通过原电池反应改变电子传递途径,生成更易溶解的次生矿物辉铜矿,从而增强黄铜矿的浸出。在添加活性炭的生物浸出过程的前期,黄钾铁矾迅速累积但铜离子的浸出速率未受到抑制,然而在生物浸出的后期,大量黄钾铁矾沉淀在矿物表面,从而抑制黄铜矿的进一步溶解。在添加活性炭时检测到了更多的单质硫,但由于嗜热古菌混合培养物具有很强的硫氧化活性,所以生成的单质硫被其消解,因此,未检测到其对黄铜矿浸出有显著影响。  相似文献   

17.
氧化亚铁硫杆菌浸出铁矿石脱磷技术   总被引:10,自引:0,他引:10  
研究氧化亚铁硫杆菌(A.f菌)从含磷铁矿石中脱磷的可行性及工艺技术。结果表明:氧化亚铁硫杆菌可以浸出铁矿石中的磷,生物浸出脱磷应选择缺磷9 K培养基体系,添加黄铁矿可强化细菌浸出脱磷,矿浆初始pH对脱磷率有明显影响,合适的细菌接种量、亚铁初始含量及矿石粒度有利于生物浸出脱磷。对某含磷1.12%的铁矿石,以缺磷9 K培养基为浸出体系,添加质量比为20%的黄铁矿,在初始pH值为1.7-2.0的条件下,采用A.f菌进行生物浸出,获得的脱磷率为86.6%。  相似文献   

18.
采用纯种Sulfobacillus thermosulfidooxidans菌进行铁闪锌矿的生物浸出及电化学实验,研究颗粒大小、p H值控制和外加Fe3+离子对锌浸出的影响。结果表明:在生物浸出过程中铁闪锌矿生物浸出的最佳粒度范围为0.043~0.074 mm;定期调整p H值至初始值对获得较高的浸出率有重要影响;外加Fe3+离子能加速铁闪锌矿的生物浸出,但当外加Fe3+离子浓度超过2.5 g/L时,促进作用变弱,甚至阻碍铁闪锌矿的溶解。SEM和XRD分析浸渣发现,在矿物表面形成一层由单质硫和黄钾铁矾组成的产物层,并导致后期的浸出速度低。电化学测试实验结果表明,外加Fe3+离子可以增加腐蚀电流密度,有利于锌的提取。交流阻抗谱表明,添加Fe3+离子后没有改变反应过程的控制步骤。  相似文献   

19.
含铜金矿的压力氧化浸出及其机理   总被引:4,自引:1,他引:4  
含铜金矿在氧气分压为o.45 MPa、温度约为110℃条件下于高压釜中氧化一定时间,浸出铜后,渣氰化浸金,获得的铜、金浸出率分别为90.3%和96.55%.通过分析X射线衍射谱及CuFeS2-H2SO4-NaCl-H2O体系在25℃下的ψ-pH图,确定了载金矿物的氧化机理,分析了浸出体系的酸度、温度及氯化钠浓度对含铜金矿预氧化及浸出过程的影响规律.结果表明:硫化矿的氧化溶解首先是磁黄铁矿,其次是铜的次生硫化矿,再次是黄铜矿,最后是黄铁矿;载金黄铜矿的氧化首先是铁从黄铜矿的晶格中氧化溶解出来,生成中间产物CuS2和CuS;较高的酸度和氯化钠浓度有利于单质硫的生成、三价铁的水解和铜的浸出,进而有利于金浸出率的提高.  相似文献   

20.
针对锌精矿氧压酸浸过程受多相传质影响导致氧化能力不足的问题,本文利用锌浸出渣中可溶性Fe(Ⅲ)的强氧化性促进锌精矿中低价硫化物的高效溶解,同时实现铁酸锌、金属硫化物的强化解离和铁的清洁分离。结果表明:锌浸出渣中铁酸锌溶解产生的Fe(Ⅲ)可以提高体系氧化还原电位,强化锌精矿浸出;以添加锌浸出渣形式向系统补充6.1g/L Fe(Ⅲ)后,锌浸出率由87.59%升高到98.82%;升高反应温度、提高氧分压将有助于提升Fe(Ⅲ)、Fe(Ⅱ)的氧化还原反应能力,同时促进锌的高效浸出和Fe(Ⅲ)的矿物化沉淀;提高酸度可以加快锌精矿的溶解速率,但酸度过高将抑制Fe(Ⅲ)矿物化水解沉淀。在初始Fe(Ⅲ)为6.1 g/L、初始酸度95 g/L、反应温度160℃、氧分压0.8 MPa、液固比6 mL∶1 g、搅拌转速800 r/min、反应时间120min的优化技术条件下,锌浸出率为98.82%,同时溶液中92.36%的铁以铁矾的形式沉淀入渣,浸出终渣含黄钾铁矾40.2%、铅铁矾14.6%;浸出液含铁低至1.04 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号