首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

2.
高阶Bernoulli多项式和高阶Euler多项式的关系   总被引:7,自引:0,他引:7  
雒秋明  马韵新  祁锋 《数学杂志》2005,25(6):631-636
利用发生函数的方法,讨论了高阶Bernoulli数和高阶Euler数,高阶Bernoulli多项式和高阶Euler多项式之间的关系,得到了经典Bernoulli数和Euler数,经典Bernoulli多项式和Euler多项式之间的新型关系。  相似文献   

3.
许艳 《中国科学:数学》2014,44(4):409-422
本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的Appell多项式序列恰为N阶Bernoulli多项式.从而,Bernoulli多项式与B样条的导函数之间构成了一组双正交系统,且标准化之后的Bernoulli多项式的渐近形式为Hermite多项式.由二项分布所生成的Appell序列为Euler多项式,从而,Euler多项式与二项分布的导函数之间构成一组双正交系统,且标准化之后的Euler多项式渐近于Hermite多项式.本文给出Appell序列的生成函数满足的尺度方程的充要条件,给出渐近于Hermite多项式的函数列的判定定理.应用该定理,验证广义Buchholz多项式、广义Laguerre多项式和广义Ultraspherical(Gegenbauer)多项式渐近于Hermite多项式的性质,从而验证超几何多项式的Askey格式的成立.  相似文献   

4.
A multiplication theorem for the Lerch zeta function ?(s,a,ξ) is obtained, from which, when evaluating at s=−n for integers n?0, explicit representations for the Bernoulli and Euler polynomials are derived in terms of two arrays of polynomials related to the classical Stirling and Eulerian numbers. As consequences, explicit formulas for some special values of the Bernoulli and Euler polynomials are given.  相似文献   

5.
We prove characterizations of Appell polynomials by means of symmetric property. For these polynomials, we establish a simple linear expression in terms of Bernoulli and Euler polynomials. As applications, we give interesting examples. In addition, from our study, we obtain Fourier expansions of Appell polynomials. This result recovers Fourier expansions known for Bernoulli and Euler polynomials and obtains the Fourier expansions for higher order Bernoulli–Euler's one.  相似文献   

6.
The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order.  相似文献   

7.
We define the generalized potential polynomials associated to an independent variable, and prove an explicit formula involving the generalized potential polynomials and the exponential Bell polynomials. We use this formula to describe closed type formulas for the higher order Bernoulli, Eulerian, Euler, Genocchi, Apostol-Bernoulli, Apostol-Euler polynomials and the polynomials involving the Stirling numbers of the second kind. As further applications, we derive several known identities involving the Bernoulli numbers and polynomials and Euler polynomials, and new relations for the higher order tangent numbers, the higher order Bernoulli numbers of the second kind, the numbers , the higher order Bernoulli numbers and polynomials and the higher order Euler polynomials and their coefficients.  相似文献   

8.
Hongmei Liu 《Discrete Mathematics》2009,309(10):3346-5728
In this paper, by the generating function method, we establish various identities concerning the (higher order) Bernoulli polynomials, the (higher order) Euler polynomials, the Genocchi polynomials and the degenerate higher order Bernoulli polynomials. Particularly, some of these identities are also related to the power sums and alternate power sums. It can be found that, many well known results, especially the multiplication theorems, and some symmetric identities demonstrated recently, are special cases of our results.  相似文献   

9.
We prove convolution identities of arbitrary orders for Bernoulli and Euler polynomials, i.e., sums of products of a fixed but arbitrary number of these polynomials. They differ from the more usual convolutions found in the literature by not having multinomial coefficients as factors. This generalizes a special type of convolution identity for Bernoulli numbers which was first discovered by Yu. Matiyasevich.  相似文献   

10.
高阶Bernoulli多项式和高阶Euler多项式的新计算公式   总被引:1,自引:0,他引:1  
李志荣  李映辉 《大学数学》2008,24(3):112-116
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式.  相似文献   

11.
We present a computer algebra approach to proving identities on Bernoulli polynomials and Euler polynomials by using the extended Zeilberger's algorithm given by Chen, Hou and Mu. The key idea is to use the contour integral definitions of the Bernoulli and Euler numbers to establish recurrence relations on the integrands. Such recurrence relations have certain parameter free properties which lead to the required identities without computing the integrals. Furthermore two new identities on Bernoulli numbers are derived.  相似文献   

12.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In 1951, P. Lévy represented the Euler and Bernoulli numbers in terms of the moments of Lévy?s stochastic area. Recently the authors extended his result to the case of Eulerian polynomials of types A and B. In this paper, we continue to apply the same method to the Euler and Bernoulli polynomials, and will express these polynomials with the use of Lévy?s stochastic area. Moreover, a natural problem, arising from such representations, to calculate the expectations of polynomials of the stochastic area and the norm of the Brownian motion will be solved.  相似文献   

14.
The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated multiple integral representations. By suitably specializing our main results, the corresponding integral representations are deduced for such familiar classes of hypergeometric polynomials as (for example) the generalized Bedient polynomials and the generalized Cesàro polynomials. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials.  相似文献   

15.
Ustinov  A. V. 《Mathematical Notes》2002,71(5-6):851-856
In this paper, we prove a discrete analog of Euler's summation formula. The difference from the classical Euler formula is in that the derivatives are replaced by finite differences and the integrals by finite sums. Instead of Bernoulli numbers and Bernoulli polynomials, special numbers Pn and special polynomials Pn(x) introduced by Korobov in 1996 appear in the formula.  相似文献   

16.
In this study, we give multiplication formula for generalized Euler polynomials of order α and obtain some explicit recursive formulas. The multiple alternating sums with positive real parameters a and b are evaluated in terms of both generalized Euler and generalized Bernoulli polynomials of order α. Finally we obtained some interesting special cases.  相似文献   

17.
In this article, the Sheffer and Appell polynomials are combined to introduce the family of Sheffer–Appell polynomials by using operational methods. The determinantal definition and other properties of the Sheffer–Appell polynomials are established. As particular cases of these polynomials, the Sheffer–Bernoulli and Sheffer–Euler polynomials are introduced and their determinantal definitions are obtained. The operational correspondence between the Appell and Sheffer–Appell polynomials is used to derive the results for the Sheffer–Appell polynomials. Certain results for the Hermite–Appell and Laguerre–Appell polynomials are also obtained.  相似文献   

18.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

19.
The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated single-, double-, and triple-integral representations. Some known or new consequences of the general results presented here, involving such classical orthogonal polynomials as the Jacobi, Laguerre, Hermite, and Bessel polynomials, and various other relatively less familiar hypergeometric polynomials, are also considered. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials.  相似文献   

20.
The nth order derivatives of tan x and sec x may be represented by polynomials P n (u) and Q n (u) in u = tan x, which are known as the derivative polynomials for the tangent and secant and have occurred in diverse contexts. In this paper, explicit representations of P n (u) and Q n (u) are derived in terms of the central factorial numbers of the second kind, and the values of the Bernoulli and Euler polynomials at rationals are expressed by means of these polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号