首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FEM/BEM混合法计算各向异性不均匀介质柱电磁散射   总被引:1,自引:0,他引:1  
应用有限元-边界元(FEM/BEM)混合法计算二维各向异性不均匀介质柱电磁散射,对介质柱内、外区域分别采用有限元和边界元法进行分析,然后应用边界条件建立部分稀疏部分满填充的矩阵方程.应用内观法结合多波前法求解该矩阵方程,分别计算了均匀分布和不均匀分布的各向异性介质柱的雷达散射截面.数值计算表明,有限元-边界元混合法在分析和计算不均匀开放域电磁问题时有一定的优势.  相似文献   

2.
针对现有各种无网格与有限元耦合思路的利弊,提出一种新的无网格局部Petrov-Galerkin-有限元耦合(MLPG-FE)方法,应用其成功求解了电磁场问题.在有限元与无网格的过渡区域内,对T.Belytschko提出的传统斜坡函数进行改进,使得交界面上求解场变量及其导数的连续性同时得到了保证,且可精确实施第一类边界条件.电磁场数值算例给出了令人满意的结果.  相似文献   

3.
The finite-difference (FD) method is a basic technique for solving differential equations. The disadvantage of it for electromagnetic (EM) problems of an open region is that the mesh needs to be terminated with the application of a proper boundary condition. In this paper, a novel exact two-point field equation (2PFE) is derived from rigorous analysis of the radiation field and it is proposed to be used as the termination boundary condition (BC) for solving EM scattering problems in the open region by the iterative FD method. This 2PFE-BC approaches its exact solution through the iteration process and, at the same time, the scattered field and the induced current density approach their exact solutions. The novel 2PFE is simple in concept and easy to apply. The validity of the 2PFE and the iterative FD method has been tested. Several two-dimensional (2-D) scattering problems have been successfully solved. The results agree very well with those obtained by method of moments (MoM) or measured equation of invariance (MEI)  相似文献   

4.
A hybrid formulation which combines the method of moments (MM) with the finite element method (FEM) to solve electromagnetic scattering and/or absorption problems involving inhomogeneous media is discussed. The basic technique is to apply the equivalence principle and transform the original problem into interior and exterior problems, which are coupled on the exterior dielectric body surface through the continuities of the tangential electric field and magnetic field. The interior problem involving inhomogeneous medium is solved by the FEM, and the exterior problem is solved by the MM. The coupling of the interior and exterior problems on their common surface results in a matrix equation for the equivalent current sources for the interior and exterior problems. Combining advantages of both methods allows complicated inhomogeneous problems with arbitrary geometry to be treated in a straightforward manner. The validity and accuracy of the formulation are checked by two-dimensional numerical results, which are compared with the exact eigenfunction solution, the unimoment solution, and Richmond's pure moment solution  相似文献   

5.
A technique using the hybrid finite element method (FEM)/method of moments (MoM) and geometrical theory of diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using finite element method (FEM). The EM fields and their normal derivatives required for FEM solution are obtained using: (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region (assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open-ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity-fed circular aperture in a finite rectangular ground plane are verified with experimental results  相似文献   

6.
A numerical method of solving electromagnetic wave scattering problem is described.Radiation boundary condition(RBC)is applied to confine EM scattering problem in unboundedregion into problem in finite region.Combined with RBC and scatterer surface boundary condi-tion,Helmholtz equation in the finite region is solved numerically by the finite difference method.Thus the distribution of induced surface current on conducting cylinder and near field can beobtained.Computational results for both polarizations for circular,elliptic and square cylindersare presented.These results are in excellent agreement with those obtained by the eigenfunctionexpansion method or moment method and much better then the results of OSRC method.  相似文献   

7.
涡旋电磁波及其在雷达中应用研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
刘康  黎湘  王宏强  程永强 《电子学报》2018,46(9):2283-2290
涡旋电磁波因携带有轨道角动量信息,相比于传统电磁波有着更高维度的信息调制自由度,在雷达目标检测和成像领域具有很大的应用潜力.本文首先介绍了涡旋电磁波基本概念和线极化条件下的辐射场分布特点.然后给出利用涡旋电磁波进行雷达目标成像和旋转目标检测的工作原理,分析总结了其相对于传统雷达探测技术展现出来的性能优势.接着综述了电磁涡旋成像和旋转多普勒检测的发展历程与研究现状,特别地,面向雷达目标探测需求对涡旋电磁波产生技术进行较为全面的总结和概括.最后,展望涡旋电磁波在雷达中应用的发展前景,指出未来发展中的若干关键科学问题.  相似文献   

8.
Double-tuned radio-frequency (RF) coils for heteronuclear mangentic resonance (MR) require sufficient electromagnetic isolation between the two resonators operating at two Larmor frequencies and independent tuning in order to attain highly efficient signal acquisition at each frequency. In this work, a novel method for double-tuned coil design at 7T based on the concept of common-mode differential-mode (CMDM) was developed and tested. Common mode (CM) and differential mode (DM) currents exist within two coupled parallel transmission lines, e.g., microstrip lines, yielding two different current distributions. The electromagnetic (EM) fields of the CM and DM are orthogonal to each other, and thus, the two modes are intrinsically EM decoupled. The modes can be tuned independently to desired frequencies, thus satisfying the requirement of dual-frequency MR applications. To demonstrate the feasibility and efficiency of the proposed CMDM technique, CMDM surface coils and volume coils using microstrip transmission line for (1)H and (13)C MRI/MRSI were designed, constructed, and tested at 7T. Bench test results showed that the isolations between the two frequency channels of the CMDM surface coil and volume coil were better than -30 and -25 dB, respectively. High quality MR phantom images were also obtained using the CMDM coils. The performance of the CMDM technique was validated through a comparison with the conventional two-pole design method at 7T. The proposed CMDM technique can be also implemented by using other coil techniques such as lumped element method, and can be applied to designing double-tuned parallel imaging coil arrays. Furthermore, if the two resonant modes of a CMDM coil were tuned to the same frequency, the CMDM coil becomes a quadrature coil due to the intrinsic orthogonal field distribution of CM and DM.  相似文献   

9.
This work presents an approximate frequency domain mathematical model based on the transmission line (TL) theory for field-to-wire coupling in a rectangular metallic enclosure. The currents and voltages at the terminations of a TL induced by known electromagnetic (EM) field sources are expressed in closed form. Validity limits and applicability of the model are discussed by comparing the analytical TL-based predictions with the outputs of a full-wave numerical analysis of the overall structure using a three-dimensional finite integration technique. Deviations from the full-wave solution, due to the scattered field from the TL, have been identified, analyzed, and discussed. The proposed analytical model proves to be generally suited for accurate prediction of radiated susceptibility of single-ended interconnections in closed environments.  相似文献   

10.
提出了一种求解粗糙面和三维目标复合电磁散射问题的通用仿真方法。将描述粗糙面上电磁波反射的基尔霍夫-赫姆霍兹方程与目标表面的电场积分方程相结合,得到新型的混合方程,进而采用矩量法求解,通过数值算例验证了该方法的精度和效率。采用此方法研究了两种典型导弹目标与粗糙面的复合散射特性,分析计算结果可得:粗糙面粗糙度参数对复合散射特性有着重要的影响作用。  相似文献   

11.
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.  相似文献   

12.
13.
In this paper, a model order reduction technique is presented. This technique, known as Galerkin asymptotic waveform evaluation (GAWE), or multipoint Galerkin asymptotic waveform evaluation (MGAWE) if multiple expansion points are considered simultaneously, can be used to reduce matrices describing electromagnetic (EM) phenomena generated through the finite element method (FEM) to a smaller space while still accurately approximating the characteristics of the original responses. The resulting solution procedure of using GAWE or MGAWE, to solve FEM equations allows for wideband frequency simulations with a reduction in total computation time. Numerical simulations using these methods are shown along with traditional methods such as using an LU decomposition at each frequency point of interest and asymptotic waveform evaluation (AWE). Comparisons in accuracy as well as computation time are also given  相似文献   

14.
电大尺寸复杂结构腔体电磁散射的IPO/FEM混合法研究   总被引:4,自引:1,他引:4  
该文将物理光学迭代法(IPO)的子域连接法与矢量有限元法(FEM)相结合,提出了一种新的混合方法用于分析计算电大尺寸复杂结构腔体目标的电磁散射特性。对于腔体内部适合用高频方法处理的部分采用IPO方法分析;对于具有复杂结构和材料特性的部分,采用矢量有限元法进行研究,利用交界面上的连续性条件实现这两种方法的耦合。为了验证理论模型的正确性,该文对某一矩形空腔及底部加载金属台阶的腔体进行了分析,计算结果与文献数据以及用时域有限差分法所得结果一致,并具有很好的收敛效果。在此基础上,对底部加载介质层的复杂结构腔体进行了分析计算,结果表明这种混合方法对于分析电大尺寸复杂结构腔体的散射特性是行之有效的。  相似文献   

15.
RUI Xi 《电讯技术》2012,52(1):105-110
A finite element method(FEM) with hybrid nodal and edge basis functio ns for solving nonaxisymmetric modes in axisymmetric resonators filled with in homogeneous media is presented. Spurious modes can be reduced by choosing proper basis functions. Several numerical results are presented to show the validity a nd the efficiency of proposed method.This method can be widely used in electroma gnetic(EM) engineering design.  相似文献   

16.
A time-domain, finite element-boundary integral (FE-BI) method is presented for analyzing electromagnetic (EM) scattering from two-dimensional (2-D) inhomogeneous objects. The scheme's finite-element component expands transverse fields in terms of a pair of orthogonal vector basis functions and is coupled to its boundary integral component in such a way that the resultant finite element mass matrix is diagonal, and more importantly, the method delivers solutions that are free of spurious modes. The boundary integrals are computed using the multilevel plane-wave time-domain algorithm to enable the simulation of large-scale scattering phenomena. Numerical results demonstrate the capabilities and accuracy of the proposed hybrid scheme  相似文献   

17.
A key use of the partial element equivalent circuit (PEEC) method is the solution of combined electromagnetic and circuit problems as they occur in many situations such as today's integrated circuit (VLSI) systems and as components in mobile devices. The method, which has been applied to a multitude of electrical interconnect and package problems, is very flexible since it is easy to add new features to the approach. However, faster solutions are of interest since the problems to be solved are continuously increasing size. A class of fast methods is evolving based on the faster evaluation of the matrix elements and the use of iterative or other matrix solvers of the resultant system for the frequency domain. Fast circuit matrix solvers are easier to obtain in the time domain than the frequency domain since the delay or retardation can be utilized to sparsify the circuit matrix. In this paper, we concentrate on techniques for the fast evaluation of the PEEC circuit element for both the frequency and time domain where possible since both are important for the solution of specific problems.  相似文献   

18.
随着薄膜体声波谐振器(FBAR)工作频率及FBAR器件集成度的不断提高,FBAR器件的电磁干扰问题显得尤为突出。常用电学模型和有限元模型都假定FBAR中的电磁场为无源准静态场,无法仿真模型的相关电磁特性。使用HFSS高频电磁仿真软件建立了FBAR的三维电磁仿真模型,采用一个包含声场特性的等效介电常数,实现了FBAR电磁场分布、电磁场耦合与压电效应的一体化仿真。分析了高频电磁场分布及电磁场耦合对谐振特性的影响,通过优化FBAR与临近元件的间距及采用不同介电常数的基板材料,减小了电磁场耦合的干扰。  相似文献   

19.
Several typical bonding wire configurations have been measured in a frequency range up to 20 GHz using a vector network analyzer. Based on scanning electron microscope (SEM) pictures all bonding wires have been discretized and orthogonal grids suitable for electromagnetic simulation have been generated. Full wave finite difference time domain (FDTD) simulations as well as static and quasi static inductance extraction using a new Monte Carlo technique and FastHenry as well as capacitance extraction with a finite element method have been carried out. Numerical results are compared to measured scattering parameters and their quality and frequency dependence is discussed. All simulation techniques are evaluated with respect to their computational effort  相似文献   

20.
基于渐近波形估计(AWE)技术和矩量法(MOM),快速分析了一维频率选择表面(FSS)的宽带电磁散射特性,首先采用MOM法将平面波照射下FSS的电场积分方程(EFIE)转化为关于感应电流的矩阵方程,并由该方程确定频率导数矩阵方程(MEFD);再在所考虑的频带内的某一给定频率处求解MEFD,得到给定频率处的频率导数感应电流;最后根据Pade逼近理论由给定频率处的频率导数感应电流确定周期性结构在任意频率入射波照射下的感应电流,根据FSS上的感应电流及谱域Floquet谐波模计算FSS的电磁散射宽带特性,计算结果表明,AWE能有效逼近MOM逐点扫描计算的结果,同时在计算速度上可加快十几倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号