首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了快速滤过型净化(m-PFC)结合气相色谱-串联质谱(GC-MS/MS)测定茶叶中10种拟除虫菊酯类农药残留的方法。比较了采用不同提取溶剂(乙腈、丙酮和乙酸乙酯)和不同提取方式(不加水浸泡和加水浸泡)时10种农药的提取效率;比较了2种QuEChERS净化管和m-PFC柱对茶叶提取液的净化效果和农药残留的回收率。结果表明,茶叶样品不加水浸泡,用乙腈提取效果最好;m-PFC柱对茶叶提取液净化效果良好,而且能保证较高的农药回收率。10种拟除虫菊酯农药在相应的范围内有良好的线性关系,相关系数(R2)大于0.9980;10种农药在4个水平添加下的回收率为87.5%~111.3%,RSD为2.1%~8.9%。方法的检出限为0.001~0.015 mg/kg,定量限为0.003~0.05 mg/kg。利用该方法检测市售50例茶叶样品中10种拟除虫菊酯农药的残留,检出率为48%,但农药残留量均在国家标准限量值以下。与传统QuEChERS法和固相萃取法相比,该方法具有操作简单、准确度和精密度良好等优点,为多种拟除虫菊酯类农药在茶叶中的残留测定提供了快速检测的新方法。  相似文献   

2.
高艺羡  陈萍虹  聂丹丹 《色谱》2018,36(6):531-540
建立了气相色谱-串联质谱(GC-MS/MS)动态多反应离子监测(dMRM)模式,结合串联双色谱柱检测茶叶中53种农药残留量的分析方法。样品中加入QuEChERS缓冲盐,用乙腈提取,采用石墨化炭黑/氨基柱(ENVI-Carb/NH2)净化。为减少农药在GC-MS/MS分析中基质效应的影响,在标准溶液中加入古洛糖酸内酯和山梨醇作为保护剂,用蒽醌-D8和磷酸三苯酯作双内标定量。结果表明,除了氯氰菊酯的线性范围是40~1000 μg/L外,其他52种农药的线性范围均为20~500 μg/L,线性关系良好,相关系数均大于0.99;有28种农药的定量限(LOQ)小于10 μg/kg,其余25种农药的定量限为10~20 μg/kg;加标回收率为72.5%~130.9%;相对标准偏差(RSD)为0.4%~19.4%。该方法能有效地减少茶叶在GC-MS/MS上的基质效应,操作简单快速,灵敏度和选择性高,适用于农药残留的日常检测。  相似文献   

3.
采用气相色谱-质谱(GC-MS)全扫描结合NIST谱库检索方法分析6种蔬菜(番茄、青刀豆、大葱、青花菜、姜、胡萝卜)提取液中的基质干扰物,以蒸发残渣重量法探讨乙二胺N-丙基硅烷(PSA)、十八烷基硅烷(C18)及两者组合对6种蔬菜提取液基质干扰物的净化效果及吸附机理,考察了原创QuEChERS方法及AOAC 2007.01方法对蔬菜中51种氨基甲酸酯类农药提取的适用性,并建立了液相色谱-串联质谱法测定蔬菜中51种氨基甲酸酯类农药残留的方法。结果表明,C18与PSA组合进行分散固相萃取的净化效果最好;AOAC 2007.01方法适用于二氧威以外的50种农药残留的提取,而原创QuEChERS方法对二氧威残留的提取可获得满意结果。经电喷雾正离子电离及多反应监测模式来测定目标化合物,采用基质匹配标准溶液曲线法进行定量。结果表明:51种农药在6种基质中3个添加水平(10、20、100 μg/kg)的回收率为58.4%~126%,相对标准偏差为3.3%~26%;以信噪比(S/N)≥10计,久效威及杀螟丹的定量限(LOQ)为50 μg/kg,其他49种农药的LOQ为0.2~10 μg/kg。本文方法有效、灵敏,适用于不同蔬菜基质中51种氨基甲酸酯类农药残留的测定。  相似文献   

4.
基于羟基多壁碳纳米管(MWCNTs - OH)净化剂改进的分散固相萃取技术,建立了党参中75种农药残留的气相色谱-串联质谱(GC - MS/MS)检测方法。样品经乙酸乙酯提取,无水硫酸镁、乙酸钠、N-丙基乙二胺和羟基碳纳米管盐析、萃取净化后,采用气相色谱-串联质谱仪测定,动态多反应监测(dMRM)模式扫描,基质标准曲线外标法定量。75种农药在5~300 μg/L范围内线性关系良好,相关系数(r2)均不低于0.996 1。方法检出限(LOD)和定量下限(LOQ)分别为0.001~0.054 mg/kg和0.002~0.178 mg/kg,在0.025、0.05、0.20、0.50 mg/kg 4个加标水平的平均回收率为69.7%~113%,相对标准偏差(RSD,n = 4)为0.64%~6.7%。该方法操作简单、快速、准确,适用于党参中农药多残留的高通量检测。  相似文献   

5.
建立超高效液相色谱-串联质谱联用(UPLC-MS/MS)及气相色谱-串联质谱联用(GC-MS/MS)法测定天麻中53种禁用农药残留。采用乙腈直接提取和基于QuEChERS原则的固相萃取法对样品进行处理。UPLC-MS/MS法采用电喷雾离子源,正离子模式下多反应监测,色谱峰面积外标法定量;GC-MS/MS法采用电子轰击离子源,色谱峰面积内标法定量。53种农药的质量浓度在一定范围内与响应值线性关系良好,相关系数均大于0.990,检出限为0.001~0.005 mg/kg,定量限为0.002~0.01 mg/kg。样品平均回收率为71.4%~118.2%,测定结果的相对标准偏差为1.4%~6.3%(n=6)。该方法能快速、有效地检测天麻中的禁用农药残留量,可用于天麻质量评价。  相似文献   

6.
建立了检测茶叶中灭多威等17种氨基甲酸酯类农药残留的超高效液相色谱-串联质谱(UPLC-MS/MS)方法。详细讨论了加水对茶叶中氨基甲酸酯类农药提取效率的影响。茶叶样品加水后,用乙腈提取,经QuEChERS方法净化,C18色谱柱分离,三重四极杆电喷雾质谱检测,基质外标法定量。17种氨基甲酸酯类农药残留在各自质量浓度范围内线性关系良好,相关系数(R~2)均大于0. 99。方法检出限(S/N=3)为0. 001~0. 02 mg/kg,定量限(S/N=10)为0. 002~0. 05 mg/kg。在0. 05,0. 5,5. 0 mg/kg 3个添加水平下,17种农药残留平均加标回收率在82. 1%~119. 2%之间,相对标准偏差均小于8. 5%。  相似文献   

7.
建立了固相萃取净化-气相色谱/串联质谱(SPE-GC-MS/MS)分析茶叶中54种农药残留的方法。样品用乙睛提取,提取液经石墨化炭黑/氨基固相萃取柱净化后,采用气相色谱-串联质谱方法在分时段选择反应监测模式下进行测定,外标法定量。当54种农药加标水平为10、50、100μg/kg时,回收率为60%~150%,方法的相对标准偏差小于16%;定量限(LOQ)均小于10μg/kg;在20~320μg/L范围内线性关系良好。方法已用于同时检测茶叶中农药多残留。  相似文献   

8.
基于QuEChERS-冷冻诱导液液萃取(CI-LLE)技术,建立了蔬菜水果中77种农药残留的超高效液相色谱-高分辨质谱检测方法。样品经常规QuEChERS方法提取、盐析和净化后,进一步以40%乙腈-水溶液对77种农药进行CI-LLE富集和净化。仪器分析以水-甲醇(两相中均含0.1%甲酸和4 mmol/L甲酸铵)为流动相进行梯度洗脱,C18色谱柱(2.6 μm,2.1 mm × 150 mm)分离,高分辨质谱以时间分段全扫描模式采集,内标法定量。结果显示,77种农药在一定浓度范围内呈良好的线性关系(r2 > 0.99);方法检出限为0.02~0.20 μg/kg,定量下限为0.05~0.50 μg/kg。空白样品在4个不同加标水平的回收率为70.8%~119%,相对标准偏差(RSD)为0.70%~15%。该方法操作简单,重现性好,能降低基质效应对农残检测的影响,具有较高的灵敏度、准确度和精密度,符合农药多残留检测技术的要求,已应用于实际样品中农药残留的定性和定量分析。  相似文献   

9.
建立了改良QuEChERS/超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(QuEChERS/UHPLC-QExactive Orbitrap MS)同时测定茶叶中166种农药残留的分析方法。样品采用改良QuEChERS技术进行前处理,以Full MS模式下的精确分子离子为定量离子,特征碎片离子与二级质谱信息定性,外标法定量。以绿茶和红茶作为基质验证方法的准确度和精密度。绿茶中15种农药在4~200μg/L范围内线性关系良好,其余151种农药在2~200μg/L范围内线性关系良好;红茶中所有农药在2~200μg/L范围内线性关系良好;相关系数(r)均大于0.99。绿茶与红茶中基质效应分别为-56%~63%和-19%~110%。在4个加标水平下,绿茶、红茶中116种农药的回收率均在70%~130%之间;绿茶和红茶中分别有99%、87%的农药相对标准偏差(RSD)小于20%。定量下限(LOQ)为10~25μg/kg。应用建立的方法分析20份实际茶叶样品(14份绿茶,6份红茶)的农药残留情况,绿茶、红茶样品中各检出9种农药,残留量均低于国家标准最大残留限量。该方法为茶叶中农药残留的高通量筛查...  相似文献   

10.
Chen H  Liu X  Wang Q  Jiang Y 《色谱》2011,29(5):409-416
采用气相色谱-串联质谱(GC-MS/MS)分析技术,建立了高灵敏度检测茶叶中88种农药残留量的方法。目标化合物经加速溶剂萃取(ASE), Carb/NH2净化小柱净化,乙腈-甲苯(3:1, v/v)洗脱,采用GC-MS/MS测定。对方法的准确性、精密度、线性范围、最低检出限(LOD)和定量限(LOQ)进行了测试。其中87.5%的农药在低水平(6.4 μg/kg)的加标回收率为70%~100%; 87.5%的农药的相对标准偏差(RSD)小于15%。每个化合物均采用灵敏度最高的离子对进行定量,并采用空白茶叶基质配制标准工作液。LOQ以10倍信噪比(S/N=10)计算,86.4%农药的LOQ值低于10 μg/kg。该方法灵敏度高、准确、可靠,适用于绿茶、乌龙茶、红茶以及普洱茶中多种农药残留量的检测。  相似文献   

11.
利用多壁碳纳米管(MWCNTs)QuEChERS法提取茶叶中拟除虫菊酯类残留农药,采用气相色谱-串联质谱(GC-MS/MS)分析测定,建立了一种灵敏度高、可靠性强的茶叶中农药残留检测方法。比较了单壁碳纳米管(SWCNTs)、MWCNTS、氨基化多壁碳纳米管和石墨烯4种碳纳米材料和其不同用量下的净化效果;采用正交试验设计对前处理最佳实验条件进行筛选,并对实验影响因素进行方差分析。结果表明:提取溶剂、碳纳米材料种类对10种拟除虫菊酯类农药回收率的影响具有极显著统计学差异(p<0.001),提取时间对回收率的影响有统计学差异(p<0.05),碳纳米材料用量对回收率影响不显著(p>0.05);最佳样品前处理条件为以乙腈为提取溶剂,超声提取35 min,净化剂为60 mg MWCNTs、200 mg PSA和200 mg C18。方法学考察表明,10种拟除虫菊酯类农药在0.01~2 mg/L范围内线性良好;检出限(LOD)为0.001~0.01 mg/kg,定量限(LOQ)为0.005~0.04 mg/kg;绿茶样品空白基质加标试验中,10种农药的回收率为91.4%~109.7%,相对标准偏差为0.12%~9.80%(n=6)。对花茶、绿茶、红茶3种茶叶基质进行基质效应(ME)评价,结果发现净化剂中加入MWCNTs在绿茶和红茶基质中能有效降低ME。利用该方法检测了市售120份茶叶中拟除虫菊酯类农药的残留,多个样品中检出目标物,但均未超标。该方法检测灵敏度高,可靠性好,具有良好的回收率和稳定性,能满足茶叶中农药残留快速定量分析的要求。  相似文献   

12.
采用分散固相萃取-气相色谱-串联质谱(QuEChERS-GC-MS/MS)建立了蔬菜中107种农药残留量的分析方法。样品由含1%冰醋酸的正己烷饱和乙腈提取、分散固相萃取法净化,采用气相色谱-串联质谱方法在分时段选择反应监测模式下进行测定,外标法定量。所有农药在0.05~1 mg/L范围内线性关系均良好;所有农药的方法定量限(LOQ)均低于10 μg/kg;在10 μg/kg的添加水平下,大蒜、青刀豆、萝卜和菠菜4种基质中绝大多数农药的平均回收率处于60%~130%之间,相对标准偏差(RSD)不大于15.3%。该方法不仅能用于多种蔬菜基质中107种农药残留的检测,而且还能较好地解决本底成分相当复杂的大蒜基质极易出现的干扰问题。  相似文献   

13.
蔬菜中26种农药残留的高效液相色谱-串联质谱法测定   总被引:10,自引:3,他引:7  
建立了蔬菜中26种农药的反相高效液相色谱-电喷雾串联质谱 (LC-ESI MS/MS) 检测方法.蔬菜样品经含0.1%醋酸的乙腈提取、浓缩、分散型固相萃取净化,液相色谱串联质谱测定,内标法定量.26种农药在5.0 ~200 μg/L范围内线性关系良好(r2>0.997).在豌豆、菠菜、脱水葱3种基质中的检出限和定量下限均为2.0 μg/kg和5.0 μg/kg.在5.0、10.0、40.0 μg/kg 3个添加水平下,26种农药的回收率为70% ~110%,精密度(RSD)小于15%.方法准确、灵敏、简单,适用于蔬菜中26种农药残留的同时测定.  相似文献   

14.
建立了基于自动QuEChERS方法的花生中297种农药的气相色谱-串联质谱(GC-MS/MS)快速检测技术,并对提取剂种类及用量、缓冲盐用量、净化剂种类及用量进行了优化。花生样品加水浸润后,采用1%(体积分数)醋酸乙腈提取,结合自动QuEChERS前处理设备,以N-丙基乙二胺(PSA)、十八烷基硅烷键合硅胶(C18)、碳十八键合锆胶(Z-Sep+)和无水硫酸镁为填料进行净化。净化液经 1 mL 乙酸乙酯复溶后,过0. 22 μm 有机微孔滤膜,采用 GC-MS/MS 在多重反应监测(MRM)模式下进行测定,基质匹配外标法进行定量。结果表明,所有农药的相关系数(r2)均大于0. 995,定量下限为 2~10 μg/kg;在 10、20、50、100 μg/kg4 个加标水平下的平均回收率分别为 72. 7%~116%、71. 9%~117%、73. 2%~112% 和 71. 5%~120%,相对标准偏差(RSDs)分别为 0. 90%~15%、0. 70%~15%、0. 60%~14% 和 0. 40%~15%。应用所建立的方法对市售8批次花生样品进行检测,结果表明,8批次样品中共有6批次检出农药残留,共检出17种农药,其中一批样品中百治磷检出浓度最高,达到34. 67 μg/kg。该方法简便、快速、灵敏度高且自动化程度高,适用于花生中数百种农药多残留的快速检测分析。  相似文献   

15.
建立了 QuEChERS法,结合气相色谱法快速测定桃胶中16种有机磷农药残留量的分析方法.桃胶样品采用乙腈提取,经QuEChERS法净化,气相色谱-火焰光度法(GC-FPD)测定,基质匹配标准曲线校正,外标法定量.采用本实验建立的方法,16种有机磷农药在0.02~1.0 μg/mL范围内线性关系良好,相关系数(R2)≥...  相似文献   

16.
建立了QuEChERS前处理,结合气相色谱-串联质谱(GC-MS/MS)法测定葡萄干中80种农药残留的分析方法。样品以1%的乙酸乙腈-NaAc提取,经乙二胺-N-丙基硅烷(PSA)和聚苯乙烯/二乙烯苯(PEP)吸附剂净化,采用气相色谱-串联质谱法,以多反应监测(MRM)模式进行检测,基质匹配外标法定量。结果表明,80种农药在各自线性范围内相关系数均大于0.991;以信噪比(S/N≥3)确定方法的检出限(LOD),其范围为0.2~6.2μg/kg;以S/N≥10确定方法的定量限(LOQ),其范围为0.6~20.5μg/kg。3个加标水平(20、50、100μg/kg)下,80种农药的回收率在62.5%~116.6%之间,相对标准偏差为3.3%~15.4%。该方法的准确度高,精密度好,通用性强。  相似文献   

17.
建立了QuEChERS结合气相色谱-串联质谱(GC-MS/MS)测定人参中41种农药残留的分析方法,采用选择反应监测(SRM)模式,外标法定量,并考察了Original、Acetate和Citrate 3种QuEChERS前处理方法对人参基质中目标农药的提取效率和净化效果。结果表明,采用Original QuEChERS前处理方法时,41种农药在一定浓度范围内的线性良好,相关系数(r)大于0.995,方法的检出限(LOD,S/N=3)为2.0~6.0μg/kg,定量下限(LOQ,S/N=10)为5.0~20.0μg/kg。在10、20、100、200μg/kg 4个加标水平下的回收率为86.7%~115%,相对标准偏差(RSD)均小于15%。该方法样品前处理简单、高效、准确、灵敏,适用于人参中多农药残留的筛选与测定。  相似文献   

18.
采用QuEChERS方法结合气相色谱-串联质谱法(GC-MS/MS)建立了蔬菜、水果中129种农药残留同时检测的分析方法。试样用1%乙酸乙腈均质提取,采用混合型固相分散萃取剂净化后,用GC-MS/MS在多反应离子监测(MRM)模式下进行检测,外标法定量。结果表明,129种药物在一定的含量范围内线性关系良好,相关系数(r2)均大于0.98;不同基质在10 μg/kg添加水平下大部分农药的平均回收率为66.2%~124.7%,相对标准偏差(RSD)为0.9%~24.4%;方法的定量限(LOQ)为0.03~16.7 μg/kg。结果表明,该方法简便快速、灵敏可靠、经济有效,适用于蔬菜、水果中农药多残留的同时快速筛查测定。  相似文献   

19.
建立了固相萃取结合气相色谱-串联质谱(GC-MS/MS)测定花椒中106种农药残留量的方法。采用多反应监测(MRM)模式检测,基质匹配标准曲线法定量。结果表明:106种农药的定量限(LOQ)范围为0.010~0.10 mg/kg,且在定量限~1.0 mg/L范围内线性关系良好,线性相关系数R2≥0.99。106种农药的平均加标回收率在60.8%~118.6%之间,相对标准偏差(RSD)在0.79%~19%之间。将该方法用于53批次市售花椒样品的筛查,结果检出21种农药残留,其中有最大残留限量值(MRL)的农药有9种,无MRL值的农药有12种。无MRL值的农药慢性膳食摄入风险值(ADI)为0.002%~0.343%, 12种农药ADI总计为1.03%,花椒中农药残留的膳食摄入风险较低。  相似文献   

20.
建立了茶叶中有机磷、有机氯、拟除虫菊酯类共33种农药残留的分析方法。样品以丙酮-二氯甲烷(体积比为1:1)为提取剂经加速溶剂方法萃取,提取液用凝胶渗透色谱净化除去大部分的色素、脂类和蜡质,再用Carb-NH2小柱和Florisil小柱净化。采用气相色谱法分析、外标法定量、气相色谱-质谱法(GC-MS)定性。加标水平为0.05 mg/kg时,大部分农药的回收率为70%~120%,相对标准偏差小于20%。方法的检测限为0.005~0.05 mg/kg (以10倍信噪比计)。该方法的提取效率高,准确灵敏,目前已应用于出口茶叶中农药残留的日常检测。大量实际样品的检测结果表明,此方法适于出口茶叶中农药残留检测实际工作的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号