首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统滑模趋近律中的抖振现象、收敛速度慢等不足,提出一种新型变指数幂次趋近律。该趋近律通过使用变指数幂次项,实现了在系统趋近过程中根据不同阶段进行自适应调节的功能,大幅提高了系统的收敛速度,并具有全局有限时间收敛特性。当系统存在模型不确定型和外部有界扰动时,滑模变量可在有限时间内收敛到边界层宽度为1左右的稳态误差界内,且该稳态误差小于现有的双幂次趋近律、快速幂次趋近律和多幂次趋近律等方法的结果。仿真算例验证了所提出趋近律的有效性和优越性。  相似文献   

2.
分数阶微积分在滑模控制中的应用特性   总被引:1,自引:0,他引:1  
针对分数阶微积分算子的信息记忆与遗传特性,从分数阶滑模趋近律与分数阶滑模控制律两方面,对分数阶微积分算子在滑模控制理论中的应用特性进行了研究。首先,从传统滑模控制理论的几种趋近律入手,引出分数阶滑模趋近律并分析其收敛特性。其次,针对航天器姿态控制系统,设计了一种分数阶滑模控制器。最后,对比数值仿真验证了所设计控制器的良好性能,与传统滑模趋近律和传统滑模控制律相比,分数阶滑模趋近律具有较好的平滑特性,分数阶滑模控制律具有更好的抗干扰性与强鲁棒性。  相似文献   

3.
张智豪  于潇雁 《力学学报》2022,54(3):778-786
针对机械臂一般操作过程中运动学的非完整特性进行运动规划时没有考虑机械臂与待抓取目标之间的关系与关节的实际特性, 研究了存在关节死区的漂浮基平面三连杆空间机械臂拦截目标前最后阶段的载体无扰动空间规划与控制. 首先根据拉格朗日第二类方程, 建立存在关节死区的载体位姿均不受控的漂浮基平面三连杆空间机械臂的动力学模型, 推导出三连杆空间机械臂反作用零空间的数学模型, 并对反作用零空间进行向量范数约束算法研究; 进而提出了一种具有抗干扰性与高收敛性的非奇异快速终端滑模控制算法实现系统的姿态无扰控制, 该方法采用变系数双幂次趋近率与非奇异快速终端滑模面相结合的方式, 提高系统状态收敛速度与抗干扰性. 为了消除机械臂关节存在的死区特性, 设计了自适应死区补偿器, 通过自适应控制来逼近死区特性的上界, 以消除关节死区对系统带来的影响, 确保跟踪控制的有效执行. 最后基于Lyapunov函数法证明了系统的稳定性, 并通过系统数值仿真结果验证了存在死区情况下机械臂的各关节角跟踪上无反应空间下的期望轨迹的同时载体的姿态处于稳定状态, 验证了所提方法的有效性.   相似文献   

4.
考虑到小型无人直升机在飞行过程中存在的不确定对无人直升机飞行控制性能的影响,设计了一种基于滑模的非线性鲁棒控制器。首先分析了悬停平衡条件下小型无人直升机的数学模型,然后通过设计滑模面,并结合标称系统的反馈增益,获得了滑模面的设计参数。在此基础上设计了基于指数趋近律的滑模控制器,并利用Lyapunov理论对整个系统的稳定性进行了分析。最后的仿真结果表明:给出的滑模控制策略能够有效地处理模型参数不确定对无人直升机飞行控制性能的影响,验证了该控制策略的有效性。  相似文献   

5.
针对摩擦条件下永磁同步电机伺服系统的高精度位置控制问题进行了研究。利用单向滑模控制算法和广义麦克斯威尔滑动(GMS)摩擦模型,设计了具备摩擦前馈补偿功能的力矩控制器,对GMS模型的参数进行了自适应调节以补偿摩擦力变化。通过设计适当的趋近率,使得该控制器在保证系统稳定的同时,产生连续的期望电流信号,消除了普通滑模带来的抖振问题,同时采用反步法反推控制电压获得了保证系统总体稳定的控制信号。最后的仿真实验结果表明,提出的方法有利于提高摩擦条件下永磁同步电机控制的控制精度。  相似文献   

6.
针对多导弹攻击时间协同的高价值或大型目标攻击问题,基于滑模控制方法,提出了一种非奇异的滑模制导律,并设计了一种适用于机动目标的导弹剩余飞行时间估计方法。通过对滑模制导律切换控制部分的合理设计,保证了系统的Lyapunov稳定性,且避免了滑模面的收敛和保持受到弹道收敛的影响总是可达的。适用于机动目标的剩余飞行时间估计方法采用虚拟目标的设计思路,将目标加速度和速度对弹目相对运动关系的影响投影到弹目视线方向上,从而实现目标的虚拟静止。针对目标固定、非机动和机动三种情况,进行了多枚导弹飞行时间协同攻击的数字仿真。仿真结果表明所估计的剩余飞行时间可以快速收敛到真值,且误差趋近于零。所设计的多导弹攻击时间协同滑模制导律在完成目标攻击的同时,实现了导弹间在攻击时间上的协同。  相似文献   

7.
结构振动的滑模变结构半主动控制   总被引:1,自引:0,他引:1  
研究应用磁流变阻尼器(MRD)对结构振动半主动控制的算法和原理。研制并对磁流变阻尼器进行了阻尼特性实验,采用非线性滞回双粘性模型描述磁流变阻尼器的阻尼特性,模型结果与实验结果非常一致。采用滑模控制算法和趋近律方法设计了半主动控制器。利用滑模控制方法所建立的控制器,本文给出了地震激励下结构振动半主动控制算例。计算分析表明,半主动滑模控制具有控制效果明显、鲁棒性好等优点,是一种非常有发展前途的控制方法。  相似文献   

8.
在有向通信拓扑下研究了导弹编队的鲁棒自适应协同跟踪控制问题。针对导弹编队系统中队形跟踪、外部扰动和模型不确定性的情况,通过选取包含位置跟踪误差和速度跟踪误差的辅助变量,提出了一种基于有向通信拓扑的鲁棒自适应编队控制策略。提出了自适应律对未知参数进行估计,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性。进一步,对于通信时滞的情况,给出了系统渐近稳定所需要满足的条件。与滑模控制等传统鲁棒控制不同,所设计的鲁棒自适应控制器是连续的,更便于导弹编队系统的实现。数值仿真结果表明,队形跟踪误差小于0.03 m,队形保持误差小于0.07 m,所设计的控制器能实现高精度的编队跟踪控制。  相似文献   

9.
大尺度结构分解为多个低阶子结构,子结构间的相互作用视为作用于子结构的有界扰动。本文提出了一种基于部分位移、速度输出反馈的建筑结构分散控制方法。分析了输出坐标下子结构稳定滑模的存在条件,得到输出坐标下子结构稳定滑模面方程。建立了基于输出的稳定分散控制格式,其中控制力非线性部分保证结构全局状态收敛至设计的滑模面,线性部分使建筑结构闭环子结构系统渐进稳定。以一20层钢结构基准模型在地震激励下的控制为例,验证了该分散控制的有效性。研究表明,使用部分位移、速度输出信号可以设计基于全局稳定的建筑结构分散滑模控制。所提控制方法有效抑制了大尺度建筑结构振动响应,避免了滑模设计所需的复杂坐标变换,简化了基于输出的稳定滑模设计。  相似文献   

10.
针对环境振动作用于参考棱镜,影响激光干涉式绝对重力测量精度的问题,提出一种超低频两级弹性主动减振控制方案,其模型参考控制采用了基于全局鲁棒因子和双幂次趋近律的组合滑模算法来实现。该方案的工作原理是由高分辨率加速度计作为振动敏感元件来检测振动信号,通过组合滑模算法模型参考控制音圈电机反作用于两级主动减振平台,消减载荷平台的垂直方向微振动位移以达到减振的目的。仿真分析表明,该方案对本征频率小于等于0.05 Hz的振动减振效果明显,在0.01~2 Hz的频段具有85%以上的减振能力,优于一般模型参考滑模控制20%~40%。  相似文献   

11.
针对自主水下航行器(AUV)在参数不确定性和外界干扰下水平轨迹跟踪控制问题,提出一种基于扰动观测器的固定时间积分滑模控制方法。首先将参数不确定性和外界干扰视为复合扰动,设计固定时间扰动观测器对其进行估计。然后在反步法设计框架下,结合固定时间理论和全局积分滑模控制,设计了固定时间积分滑模控制器。轨迹跟踪仿真结果表明,相比于传统滑模控制器,所设计的扰动观测器和控制器可以使位置和姿态的跟踪误差收敛至零域的速度由5.2 s缩短至约2.5 s,并且在没有观测器的帮助下跟踪误差也能收敛至稳定,具有更快的收敛速度和更高的鲁棒性。  相似文献   

12.
磁悬浮球实验装置是典型的非线性系统,该装置提供了常规PID控制,但难以达到理想的控制效果,由此提出采用离散滑模变结构控制来研究该系统。文中首先分析了离散滑模切换面和趋近率,然后设计了存在系统干扰和抖动情况下的离散滑模控制器,并研究了其收敛性,在此基础上提出了克服干扰和抖动的积分补偿离散滑模控制器,最后将所提出的控制方法在磁悬浮球实验装置上进行验证。试验验证结果表明,系统响应时间由PID控制的15 s减小到5 s,控制偏差也有所减小,控制效果优于PID控制,适合磁悬浮球系统的控制,为该实验装置提供了一套新的实验方法。  相似文献   

13.
本文讨论了载体姿态受控、位置不受控制的双臂空间机器人系统的控制问题.利用拉格朗日方法并结合系统动量守恒关系,建立了双臂空间机器人系统的非线性系统动力学模型.以此为基础,考虑到空间机器人系统结构的复杂性及其某些参数的变动性,根据具有较强鲁棒性的变结构控制理论,设计了双臂空间机器人载体姿态与两机械臂末端抓手惯性空间轨迹协调运动的滑模变结构控制方案.为了克服滑模变结构控制器抖振的缺点,附加设计了一个模糊控制器,以便根据系统的输出来动态调节滑模变结构控制器等速趋近率的系数,从而既确保了系统的快速响应而又消除了原有的抖振.系统数值仿真,证明了上述控制方案良好的控制效果.  相似文献   

14.
拦截高超声速飞行器的三维有限时间制导律设计   总被引:1,自引:0,他引:1  
由于高超声速飞行器具有飞行速度快、机动能力强等特点,因此,传统的制导方式难以保证拦截弹拦截高超声速飞行器时的制导精度。为了减小弹目相对速度,降低对拦截弹的过载能力要求,按照前向制导方式,设计了有限时间收敛的三维前向滑模制导律。该制导律采用了连续的快速双幂次趋近律,不仅保证收敛速度快,同时削弱了传统制导律中存在的抖振现象。在此基础上为了处理系统扰动的上界未知的问题,又设计了自适应滑模制导律,该制导律既可以处理未知上界的外部扰动又可以保证第一种制导律所具有的良好特性。运用李雅普诺夫稳定性理论对所设计的滑模制导律进行了理论证明,最后,通过数值仿真验证了所设计制导律的有效性及优越性。  相似文献   

15.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

16.
具有攻击角约束的非奇异终端滑模导引律设计   总被引:2,自引:0,他引:2  
为了满足导弹拦截高速大机动目标时高精度制导的需求,首先对二维平面内的弹目相对运动方程进行状态扩张,对于影响制导性能的目标总扰动采用了扩张状态观测器的方法进行动态补偿。然后在非奇异终端滑模面的基础上选取了两种滑模趋近律,设计了两种具有攻击角约束的非奇异终端滑模导引律。最后数值仿真结果表明,在观测器对扩张系统状态进行实时有效估计的前提下,针对不同的期望视线角和目标机动方式,所设计的两种导引律在满足期望的性能要求的同时,可实现导弹对目标的高精度快速打击。  相似文献   

17.
讨论载体位置与姿态均不受控制的漂浮基空间机器人系统的控制问题.首先导出了空间机器人欠驱动形式的系统动力学方程.之后借助于增广变量法,证明可以将上述系统动力学方程及系统增广广义Jacobi矩阵分别表示为一组适当选择的组合惯性参数的线性函数.以此为基础,根据具有较强鲁棒性的变结构滑模控制理论,设计了一种空间机器人惯性空间期望轨迹跟踪的改进变结构滑模控制方案.与传统变结构滑模控制相比,所提控制方案通过一次离线预估控制律中相关矩阵元素的上下限,从而避免了实时控制过程中重复计算系统动力学方程中科氏力、离心力项的麻烦,因此有效减少了计算量,更适用于机载计算机运算能力有限的空间机器人控制系统实时应用.仿真运算,证实了方法的有效性.  相似文献   

18.
为了提高移动机器人在室内未知环境的自主探索能力,实现移动机器人在探索目标点之间的安全、快速移动,提出一种基于边际约束的快速路径自主探索算法。首先,将机器人自主探索问题描述为部分可观测马尔可夫决策过程模型。之后,在传统的快速扩展随机树(RRT)算法基础上,将随机树的生长空间划分为边际四象限空间,结合启发式评估函数的评价。该算法加快了移动机器人在探索目标点之间的移动速度,同时减少了随机树的节点,降低了对内存空间的占用。通过Matlab仿真实验,在实验设定的仿真环境中,该算法比传统RRT算法在时间上缩短约了75%,节点数量减少了约80%,并在机器人操作系统的仿真实验中验证了算法的实用性。  相似文献   

19.
针对较大幅度外部不确定扰动下的四旋翼姿态稳定问题,设计了一种基于浸入与不变原理(ⅠⅠ)的自适应反步滑模控制器(ABSMC)。首先建立了未知大扰动下四旋翼姿态系统动力学模型,然后以横滚角子系统搭建为例,设计并应用了反步法和基于趋进率的滑模控制策略。在扰动估计误差流型设计中,融合了ⅠⅠ原理,即自适应率的选取实现了误差流型的不变和吸引,确保估计误差收敛到0。最后,对系统进行了稳定性分析和数字仿真。结果表明,在较大未知扰动情况下,融合ⅠⅠ原理方法后,经10 s所测跟踪误差平方的累加和仅为传统ABSMC方法的11.2%,控制精度大幅提高。  相似文献   

20.
针对未知环境下移动机器人动态避障存在规划轨迹长、行驶速度慢和鲁棒性差等问题,提出一种基于改进强化学习的移动机器人动态避障方法。移动机器人根据自身速度、目标位置和激光雷达信息直接得到动作信号,实现端到端的控制。基于距离梯度引导和角度梯度引导促使移动机器人向终点方向优化,加快算法的收敛速度;结合卷积神经网络从多维观测数据中提取高质量特征,提升策略训练效果。仿真试验结果表明,在多动态障碍物环境下,所提方法的训练速度提升40%、轨迹长度缩短2.69%以上、平均线速度增加11.87%以上,与现有主流避障方法相比,具有规划轨迹短、行驶速度快、性能稳定等优点,能够实现移动机器人在多障碍物环境下平稳避障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号