首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

2.
针对高超声速飞行器刚性-弹性耦合动力学特性诱发的再入姿态稳定控制难题,提出了一种具有有限时间收敛功能的自适应积分Lyapunov控制方法。建立了刚性-弹性耦合动力学模型,将弹性模态与外部不确定性视为归一化扰动,构造辅助误差补偿子系统。设计自适应律跟踪归一化扰动,可使姿态跟踪误差在有限时间内收敛,同时增强积分Lyapunov控制方法的鲁棒性。此外,为解决传统反步法控制的“微分爆炸”问题,引入一阶线性滤波器,避免了直接求导,得到了平滑且可执行的控制指令。仿真结果表明:所提控制方法在气动参数摄动±20%的条件下,实现速度跟踪误差不大于0.1 m/s,高度跟踪误差不大于0.5 m,可有效抑制弹性模态和外部扰动对姿态控制的不利影响。  相似文献   

3.
探讨了载体位置和姿态都不受控时,漂浮基空间机械臂在带有关节力矩输出死区及外部干扰情况下轨迹跟踪的控制算法设计问题。死区与外部干扰影响系统的跟踪精度与稳定性。为此引入积分型切换函数,减少外部干扰引起的稳态误差,并利用径向基函数神经网络逼近动力学方程的未知部分,设计了一种积分滑模神经网络控制方案。控制算法的优点是,在死区斜率与边界参数不确定及最优逼近误差上确界未知的条件下,可以利用最优逼近误差、死区及干扰的补偿项来消除影响。李亚普诺夫稳定性分析证明了闭环系统的稳定性,且轨迹跟踪误差将收敛到0的某个小邻域内。仿真算例证实了该控制算法的有效性,实现了空间机械臂的轨迹跟踪控制。  相似文献   

4.
针对重复使用运载器(RLV)等类飞行器存在外界干扰和执行机构故障等情况,提出一种基于姿态跟踪容错控制方法。在正常的运行模式下,姿态跟踪控制采用连续四元数反馈控制器。当系统中出现故障时,飞行器姿态将偏离参考轨迹,此时触发控制系统中滑动模态反应,使系统具有鲁棒性。通过选取适当李雅普诺夫函数,证明了所提出的控制律在存在故障的情况下是渐近稳定的。针对由于传感器干扰滑模面非零而导致的增益渐增,以及控制器性能下降问题,设计了一种具有自适应参数的自适应滑模控制律,使增益能够收敛到合理上界。最后,选取重复使用运载器再入段为对象进行仿真验证。仿真结果表明,采用有自适应滑模参数的控制系统,四元数跟踪误差能够达到10~(-4)量级。  相似文献   

5.
针对具有参数不确定性以及外部扰动的航天器编队飞行队形跟踪控制问题,基于反步控制策略提出了一种能够实现控制有界的自适应编队控制方法。首先建立航天器相对运动的非线性动力学方程,在不考虑外部干扰情况下,利用饱和函数设计了输入有界的自适应协同控制器;之后进一步考虑存在外部干扰的情况,通过估计扰动上界设计了鲁棒自适应协同控制器,并且采用Lyapunov稳定性分析方法证明了控制系统的稳定性。数值仿真结果表明,提出的控制方法能够满足控制受限并实现航天器队形的协同控制,同时在大约100 s误差收敛到0附近,队形跟踪和队形保持的稳态误差分别小于0.002 m和0.005 m。  相似文献   

6.
针对传统固体运载火箭(SLV)上升段轨迹跟踪方法无法适应大范围参数不确定性的问题,提出一种基于微分包含镇定的上升段轨迹跟踪控制器。首先,将不确定性与动力学方程相结合,建立关于状态偏差的微分包含系统;其次,设计一种基于线性矩阵不等式(LMI)的状态反馈律,对微分包含系统中的多胞体部分进行镇定,用以解决大范围参数不确定性问题;然后,将攻角和侧滑角的修正量幅值约束转化为线性矩阵不等式进行求解;最后,对微分包含系统中的扰动部分设计自适应律进行估计,结合状态反馈律与控制量约束,构造微分包含自适应饱和跟踪控制器。仿真结果表明,在给定的参数不确定性范围内,终端状态偏差收敛且满足终端精度。与基于扩张状态观测器的跟踪控制器相比,所提出的控制器拓宽了不确定性的适用边界。  相似文献   

7.
在时变通信延迟下研究了无人机群编队的鲁棒自适应控制问题。对于无人机编队系统中存在外部扰动和模型不确定性的情况,通过选取包含位置跟踪误差和速度跟踪误差的辅助变量,提出了一种适用于时变通信延迟的鲁棒自适应编队控制策略。提出了自适应律对无人机质量、外界扰动的上界等未知参数进行估计,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性,给出了系统渐近稳定所需要满足的条件。数值仿真结果表明,所提出的控制方法既能抑制外界扰动和模型不确定性对控制器的影响,同时队形跟踪和队形保持的稳态误差分别小于0.1 m和0.05 m。  相似文献   

8.
在有向通信拓扑下研究了导弹编队的鲁棒自适应协同跟踪控制问题。针对导弹编队系统中队形跟踪、外部扰动和模型不确定性的情况,通过选取包含位置跟踪误差和速度跟踪误差的辅助变量,提出了一种基于有向通信拓扑的鲁棒自适应编队控制策略。提出了自适应律对未知参数进行估计,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性。进一步,对于通信时滞的情况,给出了系统渐近稳定所需要满足的条件。与滑模控制等传统鲁棒控制不同,所设计的鲁棒自适应控制器是连续的,更便于导弹编队系统的实现。数值仿真结果表明,队形跟踪误差小于0.03 m,队形保持误差小于0.07 m,所设计的控制器能实现高精度的编队跟踪控制。  相似文献   

9.
为了抑制并联机器人建模中不确定性因素对系统性能的影响,采取了基于参考模型的变结构控制策略。以系统状态误差始终指向滑动模态且具有李雅普诺夫意义下渐近稳定的动态品质为目标设计控制量,抑制不确定性因素对系统性能的影响。通过对参考模型和滑动模态运动进行极点配置,使系统状态误差在状态空间中更快速地收敛于原点。实例将球面三自由度并联机器人用作跟踪飞行器姿态定位平台的执行机构,设计出跟踪偏差的检测方案。仿真结果表明,基于参考模型的变结构控制方法对系统的不确定性因素引起的参数变化及外界扰动具有较好的控制效果,在变结构不确定性控制量作用下,系统在0.6s后,姿态角跟踪误差控制到0.0001°的范围内。  相似文献   

10.
针对传统滑模控制在移动机器人编队中滑模面设计复杂、趋近率效果不佳的问题,提出了一种基于反步滑模的移动机器人编队控制算法。利用反步法的思想并结合移动机器人的位姿差微分方程,通过引入虚拟控制量,解决了移动机器人多输入非线性系统滑模面设计复杂的问题。理论分析了双幂次趋近率和快速幂次趋近率的趋近特征,据此设计了一种综合二者优势的快速分段幂次趋近率,提高了滑模控制趋近率的收敛速度。仿真验证了所提算法的有效性与正确性,仿真结果表明,所提算法能够快速实现编队,在存在扰动的情况下10 s内便可完成队形的重组,同时轨迹跟踪误差趋近于0。  相似文献   

11.
针对重复使用运载器(RLV)等类飞行器再入飞行段存在综合干扰问题,提出了一种基于迭代学习干扰观测器的容错控制方法。首先,根据RLV再入段运动、动力学特性及执行机构故障类型,建立带有执行机构故障的RLV面向控制模型;然后设计了一种基于S型函数的迭代学习观测器的容错控制方法,采用迭代学习干扰观测器完成对综合干扰观测并进行补偿,通过李雅普诺夫定理证明基于干扰观测器设计的改进的自适应控制器能够在有限时间收敛稳定;最后以某型RLV再入段为研究对象进行数值仿真。仿真结果表明,所提出的方法在系统中存在加性、乘性故障时,姿态跟踪能够在3 s内收敛,同时姿态稳态误差在0.01°以内。  相似文献   

12.
针对再入机动飞行器模型的参数不确定性以及外界干扰对飞行器控制性能的影响,基于反演控制和滑模控制理论,结合飞行器的动态特性要求,设计了一种基于标称模型的再入机动飞行器横向回路姿态控制方案,并基于Lyapunov方法,给出了整个系统的稳定性证明。控制系统阶跃响应仿真结果表明:系统响应无超调,调节时间为0.6 s,稳态误差为1%,优于指标要求的超调量15%,调节时间1 s,稳态误差5%,证明所提方法对模型参数大范围摄动具有强鲁棒性,且在较大程度上提高了系统的动态性能,最终达到姿态指令的快速高精度跟踪效果。  相似文献   

13.
针对带不匹配不确定非线性干扰的惯性平台稳定回路跟踪控制问题,提出了基于backstepping的动态滑模控制方法。首先,建立了惯性平台稳定回路的等价模型,该模型由一个线性模型加上一个不确定的非线性函数组成。然后,基于backstepping方法设计了带渐近稳定滑模面的动态滑模控制器,解决了模型不匹配的问题,并提高了系统的鲁棒性。进而应用Lyapunov稳定性理论证明了所设计的控制器不仅能保证闭环系统的稳定性,而且可以通过选择适当的控制器参数来调整跟踪误差的收敛率。最后,仿真结果表明,基于backstepping的动态滑模控制方法与PID控制方法相比,提高了系统的跟踪精度,增强了鲁棒性。  相似文献   

14.
针对高速列车受到执行器故障、输出幅值和变化率饱和等执行器性能约束,模型参数不确定性, 以及附加阻力干扰等影响下的跟踪控制问题,设计了一种鲁棒容错跟踪控制算法。首先,基于双曲正 切函数构造的辅助系统,构建了高速列车的增广速度跟踪控制模型;其次,为避免控制器中出现虚拟 控制信号的一阶导数,采用动态面方法并结合自适应控制技术,设计了高速列车的容错跟踪控制器, 基于 Lyapunov 函数对控制器的稳定性进行了分析;最后,对设计的容错跟踪控制算法进行了仿真验 证。仿真结果表明,控制输入及其变化率均满足所设置饱和约束的要求;列车运行中的暂态速度和位 移跟踪误差分别在 0.016 m/s 和 0.003 m 范围内,从而验证了所设计控制器的良好容错跟踪性能。  相似文献   

15.
针对具有状态时变时滞、系统不确定性、可建模扰动、运行噪声和执行器故障的卫星姿态控制系统,提出一种基于扰动观测器的自适应有限时间复合主动容错控制策略。针对可建模扰动设计扰动观测器,然后基于扰动估计误差设计了主动容错控制器。该时滞依赖控制器包含反馈控制项、扰动补偿项和快速自适应故障补偿项。提出的容错控制策略不仅保证闭环系统动态方程的有限时间有界性,而且保证闭环测量输出对于系统不确定性、运行噪声、执行器故障等的鲁棒性。给出控制器增益限制矩阵存在的充分条件及其线性矩阵不等式形式,进而给出仿真算例。仿真结果表明,基于扰动观测器方法,设计的自适应有限时间容错控制器能够快速估计可建模扰动,进而有效地实现系统的闭环容错控制。相较于基于非复合的自适应有限容错控制器,提出的方法对于状态变量的估计均方根误差分别降低了28.9%、4.7%和36.0%;对于可建模扰动估计的均方根误差降低了38.8%。仿真验证了所提方法的有效性。  相似文献   

16.
针对基座与臂杆存在柔性且执行机构发生故障的自由漂浮空间机器人系统,设计了快速终端滑模容错抑振控制器。结合线性弹簧假设、欧拉-伯努利梁理论和假设模态法提取了系统的柔性特征,利用拉格朗日方程推导出柔性基、柔性臂空间机器人系统的动力学模型;基于双幂次非奇异快速终端滑模为系统设计了有限时间容错控制器,采用Lyapunov函数法证明了闭环系统的稳定性;在此基础上,引入混合轨迹对容错控制器进行修正,进而构造出基于虚拟控制力的有限时间容错抑振控制器,实现对空间机器人载体姿态与关节轨迹的快速跟踪控制及基座与臂杆柔性振动的有效抑制。仿真结果表明,相较于无容错机制的计算力矩抑振控制算法,所设计算法的轨迹跟踪误差收敛速度提升了68.75%,弹性基座的振幅减小了78%,限定在1.1×10-4 m之内。  相似文献   

17.
针对存在执行器故障、转动惯量偏差以及外部扰动等系统不确定性的航天器姿态跟踪问题,提出一种有限时间自适应容错姿态控制方法。建立基于四元数的航天器姿态动力学模型、执行器故障模型和系统不确定性模型,并将执行器故障分为乘性故障和加性故障两大类;利用滑模控制和有限时间控制理论设计有限时间姿态控制器,并通过设计自适应变量及更新方法对执行器故障以及系统不确定性引起的控制偏差上界进行估计和补偿,使姿态控制器对故障和扰动具有良好的适应性和鲁棒性。得到的新型有限时间自适应容错姿态控制器能够保证航天器在执行器故障以及系统不确定性条件下在有限时间内精确收敛到期望值。利用Lyapunov稳定性理论证明了系统的渐进稳定性和有限时间稳定性,数值仿真验证了所提出方法的可行性和有效性。  相似文献   

18.
针对较大幅度外部不确定扰动下的四旋翼姿态稳定问题,设计了一种基于浸入与不变原理(ⅠⅠ)的自适应反步滑模控制器(ABSMC)。首先建立了未知大扰动下四旋翼姿态系统动力学模型,然后以横滚角子系统搭建为例,设计并应用了反步法和基于趋进率的滑模控制策略。在扰动估计误差流型设计中,融合了ⅠⅠ原理,即自适应率的选取实现了误差流型的不变和吸引,确保估计误差收敛到0。最后,对系统进行了稳定性分析和数字仿真。结果表明,在较大未知扰动情况下,融合ⅠⅠ原理方法后,经10 s所测跟踪误差平方的累加和仅为传统ABSMC方法的11.2%,控制精度大幅提高。  相似文献   

19.
基于扩张观测器的四旋翼无人机轨迹鲁棒滑模控制   总被引:1,自引:0,他引:1  
针对四旋翼无人机轨迹追踪问题,提出了一种基于扩张状态观测器的鲁棒滑模控制方法。考虑无人机系统受到内外部扰动、线速度未知等不确定性影响,通过引入扩张状态观测器,对系统不确定因素进行实时估计并给予补偿,实现了系统对扰动的鲁棒性和对环境的高度适应性。同时,滑模控制通过引入切换函数来消除干扰及不确定项,但较大的切换增益会引起系统颤振,因此,干扰和不确定项是颤振的主要来源,利用扩张状态观测器来估计干扰及不确定项并加以补偿,消除了颤振。利用Lyapunov理论,证明了控制系统的稳定性。系统仿真实验结果表明,所提出的控制方法能够保证四旋翼无人机轨迹追踪的鲁棒性,旋翼转速最大跳变幅值降低86.4%~94.5%,提高了系统稳定性。  相似文献   

20.
深入研究了三自由度并串联混合机构稳定平台,设计了一个非线性自适应控制器。考虑到实际系统工作中存在摩擦、负载扰动和动力学参数误差,分离出动力学模型中的未建模动力学参数、摩擦力参数和负载扰动,建立了关于待辨识参数的线性动力学模型。运用Lyapunov方法设计了一个非线性自适应控制器。构建了并串联光电稳定平台伺服系统实验平台。分别将所设计的控制器与计算力矩控制器分别在高速和低速扰动情况进行了实验,实验表明所提出非线性自适应控制器在低速0.006(°)/s时,跟踪精度分别为滚转轴0.071°、俯仰轴0.064°、偏转轴0.038°,在20(°)/s高速状态下,跟踪精度分别为滚转轴0.045°、俯仰轴0.042°、偏转轴0.029°,其控制效果明显好于传统控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号