首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
在采用区域选择性硝化方法合成β-硝基-5,10,15,20-四芳基卟啉铜、镍配合物的过程中,发现并通过核磁等方法分析了5,10,15,20-四(2-甲氧基苯基)卟啉及其相应β-硝基取代物的阻旋异构现象.图谱分析表明,与其结构类似的5,10,15,20-四(2-羟基苯基)卟啉及5,10,15,20-四(4-甲氧基苯基)卟啉系列化合物没有该阻旋异构现象,说明邻位甲氧基阻碍了苯环与芳环之间C-C单键的旋转.进一步通过Chemdraw 3D Ultra软件能量最小化计算,讨论了阻转异构体可能的方式.  相似文献   

2.
用Vilsmeier醛基化反应的中间物直接胺解制备四苯基卟啉Schiff碱, 测定了四苯基卟啉蒽醌Schiff碱(P-AQ)在光照和氩气氛中的可见光谱差谱(光-暗)和荧光光谱。对结果进行了讨论, 并用在光辐照下P-AQ分子构型变化来解释分子内电子转移生成P^+.-AQ^-. 离子自由基的稳定性。  相似文献   

3.
用Vilsmeier醛基化反应的中间物直接胺解制备四苯基卟啉Schiff碱, 测定了四苯基卟啉蒽醌Schiff碱(P-AQ)在光照和氩气氛中的可见光谱差谱(光-暗)和荧光光谱。对结果进行了讨论, 并用在光辐照下P-AQ分子构型变化来解释分子内电子转移生成P^+.-AQ^-. 离子自由基的稳定性。  相似文献   

4.
用Vilsmeier醛基化反应的中间物直接胺解制备四苯基卟啉Schiff碱,测定了四苯基卟啉蒽醌Sohiff碱(P-AQ)在光照和氩气氛中的可见光谱差谱(光—暗)和荧光光谱。对结果进行了讨论,并用在光辐照下P-AQ分子构型变化来解释分子内电子转移生成P_-AQ_离子自由基的稳定性。  相似文献   

5.
meso,β-和β,β-全氟醚基磺酸酯桥连双卟啉的合成   总被引:1,自引:0,他引:1  
β-氟砜基全氟醚基取代四芳基卟啉与5-(4-羟苯基)-10,15,20-三苯基卟啉、BINOL反应分别生成meso,β-和β,β-全氟醚基磺酸酯桥连双卟啉,双卟啉与醋酸锌在CHCl3/CH3OH中回流可高产率获得双锌卟啉,测定并讨论了meso,β-和β,β-全氟醚基磺酸酯连接双卟啉的紫外可见和荧光光谱.  相似文献   

6.
从3-甲基-2,4-戊二酮出发,经多步反应合成了3,3′,4,4′-四-甲基-2,2′-二吡咯基甲烷(TMDPM),改进了合成TMDPM的脱羧反应.研究了TMDPM与对-硝基苯甲醛反应合成meso-5,15-双-苯基-卟啉反应,发现对-甲基苯磺酸是卟啉原合成的良好催化剂,2,3-二-氯-5,6二氰基-1,4-苯醌是将卟啉原转化为卟啉的良好氧化剂;硝基卟啉经SnCl2还原成氨基卟啉后,用固-液抽提进行氨基卟啉的纯化,得到了5,15-双(对-硝基苯基)-2,3,7,8,12,13,17,18-八甲基卟啉、5,15-双(对-氨基苯基)-2,3,7,8,12,13,17,18-八甲基卟啉及其金属衍生物,并表征了其结构  相似文献   

7.
本文首次合成出镧系乙酰丙酮-α,β,γ,δ-四邻硝基苯基卟啉配合物Ho(o-NO_2)TPPacac(Ⅰ),并简单地讨论了它的性质。 反应中间物三水乙酰丙酮配合物Ho(acac)_3·3H_2O用文献方法[1]合成和纯制。α,β,γ,δ-四邻硝基苯基卟啉(o-NO_2)TPP用改进的Kim,J.B.法[2]  相似文献   

8.
锰四芳基卟啉与高碘酸四丁基铵(n-Bu4NIO4)和咪唑(ImH)组合,为羧酸氧化脱羧提供了一个有效的催化剂体系.中位含有吸电子基团和/或大体积芳基的中位-四芳基卟啉使金属卟啉的活性降低.咪唑的存在和金属中心的选择对金属卟啉的催化性能起关键性作用,催化体系中的反离子也有重要影响.Mn(TPP)CN/n-Bu4NIO4/ImH体系的催化活性最好.二苯基乙酸的氧化脱羧可能涉及高价的含氧锰物种与反应物间的相互作用,提出了可能的反应机理.  相似文献   

9.
新型2-氢醌-多羟基卟啉的合成及其抗菌活性研究   总被引:9,自引:1,他引:8  
黄齐茂  陈彰评  陈世清  徐汉生  周翔 《化学学报》2004,62(21):2182-2186
为寻找新的光动力治疗光敏剂,首次利用电中性的对苯二酚与2-硝基-5,10,15,20-四芳基卟啉直接反应,制备了一系列新型2-氢醌-5,10,15,20-四(4-羟基苯基)卟啉,分离产率达90%以上.用青霉素钠做对照,首次研究了2-氢醌-5,10,15,20-四(4-羟基苯基)卟啉及其Ni(Ⅱ),Zn(Ⅱ)配合物对金黄色葡萄球菌(Staphylococcus aureus,ATCC 25923)和大肠杆菌(Escherichia coli,ATCC 25922)的抑菌活性,显示其浓度为80μmol/L时,就能完全抑制金黄色葡萄球菌的生长(而相应的青霉素钠的浓度为320μmol/L),但对大肠杆菌的作用不明显.结果表明,2-氢醌-5,10,15,20-四(4-羟基苯基)卟啉及其金属配合物在杀灭金黄色葡萄球菌等方面具有很好的应用前景.  相似文献   

10.
1987年Gregg等[1]合成了八酯取代卟啉及其Zn配合物并研究了其液晶性,1990年Shimichi等[2]报道了对-烷氧取代型四苯基卟啉(n=10,12)及其Co,Zn配合物(n=10)的液晶性,这些现象引起了人们对卟啉类化合物液晶性能研究的极大兴趣[3],我们在前文[4~6]报道了meso-四(对烷氧苯基)卟啉及其金属配合物的合成、表征和液晶性研究,但目前仍无meso-四(间烷氧基苯基)卟啉及其金属配合物的液晶性能的报道.本文合成了meso-四(间烷氧基苯基)卟啉及其铜、钴、锌配合物四个系列40个化合物,其中未见文献报道的新化合物35个;研究了其合成、分离、纯化方法;对于长链烷氧基取代的间位卟啉配体及其金属配合物,我们采用石油醚-无水甲醇混合溶剂重结晶和冰盐浴长时间冷冻的方法,首次得到这四个系列化合物的晶体或固体,在偏光显微镜下有明显的双折射现象.我们采用1HNMR,MS,IR,UV,元素分析等分析测试表征手段确证了这些化合物的结构,研究了这四个系列化合物的结构与1HNMR,IR,UV,MS的波谱关系及判据,报道和解析了间位长链烷氧基取代的四苯基卟啉铜配合物的1H NMR研究结果.  相似文献   

11.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

12.
The simple silylhydrazines F(3)SiN(Me)NMe(2) (1), F(2)Si(N(Me)NMe(2))(2) (2), and F(3)SiN(SiMe(3))NMe(2) (3) have been prepared by reaction of SiF(4) with LiN(Me)NMe(2) and LiN(SiMe(3))NMe(2), while F(3)SiN(SnMe(3))NMe(2) (4) was prepared from SiF(4) and (Me(3)Sn)(2)NNMe(2) (5). The compounds were characterized by gas-phase IR and multinuclear NMR spectroscopy ((1)H, (13)C, (14/15)N, (19)F, (29)Si, (119)Sn), as well as by mass spectrometry. The crystal structures of compounds 1-5 were determined by X-ray crystallography. The structures of free molecules 1 and 3 were determined by gas-phase electron diffraction. The structures of 1, 2, and 4 were also determined by ab initio calculations at the MP2/6-311+G** level of theory. These structural studies constitute the first experimental proof for the presence of strong Si.N beta-donor-acceptor bonds between the SiF(3) and geminal NMe(2) groups in silylhydrazines. The strength of these non-classical Si.N interactions is strongly dependent on the nature of the substituent at the alpha-nitrogen atom of the SiNN unit, and has the order 3>4>1. The valence angles at these extremely deformed alpha-nitrogen atoms, and the Si.N distances are (crystal/gas): 1 104.2(1)/106.5(4) degrees, 2.438(1)/2.510(6) A; 3 83.6(1)/84.9(4) degrees, 2.102(1)/2.135(9) A; 4 89.6(1) degrees, 2.204(2) A.  相似文献   

13.
The reaction of trans-[(C(6)F(5))(p-tol(3)P)(2)PtCl] (PtCl) and butadiyne (cat. CuI, HNEt(2)) gives trans-[(C(6)F(5))(p-tol(3)P)(2)Pt(Ctbond;C)(2)H] (PtC(4)H, 81 %), which reacts with excess HC(triple bond)CSiEt(3) under Hay coupling conditions (O(2), cat. CuCl/TMEDA, acetone) to yield PtC(6)Si (53 %). A solution of PtC(6)Si in acetone is treated with wet nBu(4)NF to generate PtC(6)H. The addition of ClSiMe(3) (F(-) scavenger) and then excess HC(triple bond)CSiEt(3) under Hay conditions gives PtC(8)Si (39 %). Hay homocouplings of PtC(4)H, PtC(6)H, and PtC(8)H (generated in situ analogously to PtC(6)H) yield PtC(8)Pt, PtC(12)Pt, and PtC(16)Pt (97-92 %). Reactions of PtC(4)H and PtC(6)H with PtCl (cat. CuCl, HNEt(2)) give PtC(4)Pt and PtC(6)Pt (69 %, 34 %). The attempted conversion of PtC(8)H to PtC(10)Si affords mainly PtC(16)Pt, with traces of PtC(20)Pt and PtC(24)Pt. The complexes PtC(x)Pt are exceedingly stable (dec pts 234 to 288 degrees C), and Et(3)P displaces p-tol(3)P to give the corresponding compounds Pt'C(8)Pt' and Pt'C(12)Pt' (94-90 %). The effect of carbon chain lengths upon IR nu(C(triple bond)C) patterns (progressively more bands), UV/Vis spectra (progressively red-shifted and more intense bands with epsilon >600 000 M(-1) cm(-1)), redox properties (progressively more difficult and less reversible oxidations), and NMR values are studied, and analyzed with respect to the polymeric sp carbon allotrope "carbyne". The crystal structure of PtC(12)Pt shows a dramatic, unprecedented degree of chain bending, whereas the chains in PtC(8)Pt, Pt'C(12)Pt', and PtC(16)Pt are nearly linear.  相似文献   

14.
The synthesis of the crown-ether-substituted bis(organostannyl)methanes Ph(3)SnCH(2)Sn(Ph(2))-CH(2)-[16]crown-5 (1) and Ph(2)ISnCH(2)Sn(I)(Ph)-CH(2)-[16]crown-5 (2) is reported. Both compounds have been characterized by elemental analyses, (1)H, (13)C, (19)F, and (119)Sn NMR spectroscopy, and in the case of compound 2 also by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis revealed for the aqua complex 2.H(2)O trigonal-bipyramidal-configured tin atoms with intramolecular Sn(1)-O(1) and Sn(2)-O(1W) distances of 2.555(2) and 2.440(3) A, respectively. The water molecule is trapped in a sandwich-like fashion between the crown ether oxygen atoms O(2) and O(4) and the Sn(2) atom. NMR spectroscopy unambiguously proved the ability of compound 2 in acetonitrile to overcome the high lattice energy of sodium fluoride and to complex the latter under charge separation.  相似文献   

15.
Stimulated by the recent observation of the first C(56)Cl(10) chlorofullerene (Science, 2004, 304, 699), we performed a systematic density functional study of the structures and properties of C(56)Cl(10) and related compounds. The fullerene derivatives C(56)Cl(8) and C(56)Cl(10) based on the parent fullerene C(56)(C(2v):011), rather than those from the most stable C(56) isomer with D(2) symmetry, are predicted to possess the lowest energies, and they are highly aromatic. Further investigations show that the heats of formation of the C(56)Cl(8) and C(56)Cl(10) fullerene derivatives are highly exothermic, that is, -48.59 and -48.89 kcal mol(-1) per Cl(2) (approaching that of C(50)Cl(10)), suggesting that adding eight (or ten) Cl atoms releases much of the strain of pure C(56)(C(2v):011) fullerene and leads to highly stable derivatives. In addition, C(56)Cl(8) and C(56)Cl(10) possess large vertical electron affinities, especially for C(56)Cl(8) with value of 3.20 eV, which is even larger than that (3.04 eV) of C(50)Cl(10), indicating that they are potential good electron acceptors with possible photonic/photovoltaic applications. Finally, the (13)C NMR chemical shifts and infrared spectra of C(56)Cl(8) and C(56)Cl(10) are simulated to facilitate future experimental identification.  相似文献   

16.
There are number of important developments in the area of elastomeric polymers, including (i) network chains of controlled stiffness, (ii) model elastomers (including dangling-chain networks), (iii) fluorosiloxane elastomers, (iv) new thermoplastic elastomers, (v) other new elastomers, (v) bimodal network chain-length distributions, (vi) cross linking in solution or in a state of deformation, and (vii) gel collapse. Interesting elastomeric composites include those with (i) in-situ generated ceramic-like particles, (ii) ellipsoidal fillers, (iii) clay-like layered fillers, (iv) polyhedral oligomeric silsesquioxane (POSS) particles, (v) porous fillers, (vi) elastomeric domains modifying ceramics, and (vii) controlled interfaces. New characterization techniques are being developed for elastomers, and there have been new developments in elasticity theory and in elastomer processing. Some examples of societal aspects of relevance are (i) synthesis of elastomers in environmentally-friendly solvents, (ii) biosynthesis, (iii), recyclability, (iv) improved adhesion to tire cords, and (v) better barrier properties in anti-terrorism clothing. Educational topics include curriculum development, and mobile laboratories for elastomer experiments and demonstrations.  相似文献   

17.
In the quest for low-molecular-weight metal sulfur complexes that bind nitrogenase-relevant small molecules and can serve as model complexes for nitrogenase, compounds with the [Ru(PiPr(3))('N(2)Me(2)S(2)')] fragment were found ('N(2)Me(2)S(2)'(2-)=1,2-ethanediamine-N,N'-dimethyl-N,N'-bis(2-benzenethiolate)(2-)). This fragment enabled the synthesis of a first series of chiral metal sulfur complexes, [Ru(L)(PiPr(3))('N(2)Me(2)S(2)')] with L=N(2), N(2)H(2), N(2)H(4), and NH(3), that meet the biological constraint of forming under mild conditions. The reaction of [Ru(NCCH(3))(PiPr(3))('N(2)Me(2)S(2)')] (1) with NH(3) gave the ammonia complex [Ru(NH(3))(PiPr(3))('N(2)Me(2)S(2)')] (4), which readily exchanged NH(3) for N(2) to yield the mononuclear dinitrogen complex [Ru(N(2))(PiPr(3))('N(2)Me(2)S(2)')] (2) in almost quantitative yield. Complex 2, obtained by this new efficient synthesis, was the starting material for the synthesis of dinuclear (R,R)- and (S,S)-[micro-N(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] ((R,R)-/(S,S)-3). (Both 2 and 3 have been reported previously.) The as-yet inexplicable behavior of complex 3 to form also the R,S isomer in solution has been revealed by DFT calculations and (2)D NMR spectroscopy studies. The reaction of 1 or 2 with anhydrous hydrazine yielded the hydrazine complex [Ru(N(2)H(4))(PiPr(3))('N(2)Me(2)S(2)')] (6), which is a highly reactive intermediate. Disproportionation of 6 resulted in the formation of mononuclear diazene complexes, the ammonia complex 4, and finally the dinuclear diazene complex [micro-N(2)H(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] (5). Dinuclear complex 5 could also be obtained directly in an independent synthesis from 1 and N(2)H(2), which was generated in situ by acidolysis of K(2)N(2)(CO(2))(2). Treatment of 6 with CH(2)Cl(2), however, formed a chloromethylated diazene species [[Ru(PiPr(3))('N(2)Me(2)S(2)')]-micro-N(2)H(2)[Ru(Cl)('N(2)Me(2)S(2)CH(2)Cl')]] (9) ('N(2)Me(2)S(2)CH(2)Cl'(2-) =1,2-ethanediamine-N,N'-dimethyl-N-(2-benzenethiolate)(1-)-N'-(2-benzenechloromethylthioether)(1-)]. The molecular structures of 4, 5, and 9 were determined by X-ray crystal structure analysis, and the labile N(2)H(4) complex 6 was characterized by NMR spectroscopy.  相似文献   

18.
HP-Ca(2)Si(5)N(8) was obtained by means of high-pressure high-temperature synthesis utilizing the multianvil technique (6 to 12 GPa, 900 to 1200 degrees C) starting from the ambient-pressure phase Ca(2)Si(5)N(8). HP-Ca(2)Si(5)N(8) crystallizes in the orthorhombic crystal system (Pbca (no. 61), a=1058.4(2), b=965.2(2), c=1366.3(3) pm, V=1395.7(7)x10(6) pm(3), Z=8, R1=0.1191). The HP-Ca(2)Si(5)N(8) structure is built up by a three-dimensional, highly condensed nitridosilicate framework with N([2]) as well as N([3]) bridging. Corrugated layers of corner-sharing SiN(4) tetrahedra are interconnected by further SiN(4) units. The Ca(2+) ions are situated between these layers with coordination numbers 6+1 and 7+1, respectively. HP-Ca(2)Si(5)N(8) as well as hypothetical orthorhombic o-Ca(2)Si(5)N(8) (isostructural to the ambient-pressure modifications of Sr(2)Si(5)N(8) and Ba(2)Si(5)N(8)) were studied as high-pressure phases of Ca(2)Si(5)N(8) up to 100 GPa by using density functional calculations. The transition pressure into HP-Ca(2)Si(5)N(8) was calculated to 1.7 GPa, whereas o-Ca(2)Si(5)N(8) will not be adopted as a high-pressure phase. Two different decomposition pathways of Ca(2)Si(5)N(8) (into Ca(3)N(2) and Si(3)N(4) or into CaSiN(2) and Si(3)N(4)) and their pressure dependence were examined. It was found that a pressure-induced decomposition of Ca(2)Si(5)N(8) into CaSiN(2) and Si(3)N(4) is preferred and that Ca(2)Si(5)N(8) is no longer thermodynamically stable under pressures exceeding 15 GPa. Luminescence investigations (excitation at 365 nm) of HP-Ca(2)Si(5)N(8):Eu(2+) reveal a broadband emission peaking at 627 nm (FWHM=97 nm), similar to the ambient-pressure phase Ca(2)Si(5)N(8):Eu(2+).  相似文献   

19.
The hydroxo compounds [Re(OH)(CO)(3)(N-N)] (N-N=bipy, 2 a; Me(2)-bipy, 2 b) were prepared in a biphasic H(2)O/CH(2)Cl(2) medium by reaction of [Re(OTf)(CO)(3)(N-N)] with KOH. In contrast, when anhydrous CH(2)Cl(2) was used, the binuclear hydroxo-bridged compound [[Re(CO)(3)(bipy)](2)(mu-OH)]OTf (3-OTf) was obtained. Compound [Re(OH)(CO)(3)(Me(2)-bipy)] (2 b) reacted with phenyl acetate or vinyl acetate to afford [Re(OAc)(CO)(3)(Me(2)-bipy)] (4) and phenol or acetaldehyde, respectively. The reactions of [Mo(OH)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1), 2 a, and 2 b toward several unsaturated organic electrophiles were studied. The reaction of 1 with (p-tolyl)isocyanate afforded an adduct of N,N'-di(p-tolyl)urea and the carbonato-bridged compound [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-eta(1)(O),eta(1)(O)-CO(3))] (5). In contrast, the reaction of 2 a with phenylisocyanate afforded [Re(OC(O)NHPh)(CO)(3)(bipy)] (6); this results from formal PhNCO insertion into the O-H bond. On the other hand, compounds [Mo[SC(O)NH(p-tolyl)](eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (7), [Re[SC(O)NH(p-tolyl)](CO)(3)(Me(2)-bipy)] (8 a), and [Re[SC(O)NHEt](CO)(3)(Me(2)-bipy)] (8 b) were obtained by reaction of 1 or 2 b with the corresponding alkyl or aryl isothiocyanates. In those cases, RNCS was inserted into the M-O bond. The reactions of 1, 2 a, and 2 b with dimethylacetylenedicarboxylate (DMAD) gave the complexes [Mo[C(OH)-C(CO(2)Me)C(CO(2)Me)-O](eta(3)-C(3)H(4)-Me-2)(CO)(phen)] (9) and [Re[C(OH)C(CO(2)Me)C(CO(2)Me)O](CO)(2)(N-N)] (N-N=bipy, 10 a; Me(2)-bipy, 10 b). The molecules of these compounds contain five-membered metallacycles that are the result of coupling between the hydroxo ligand, DMAD, and one of the CO ligands. The new compounds were characterized by a combination of IR and NMR spectroscopy, and for [[Re(CO)(3)(bipy)(2)(mu-OH)]BF(4) (3-BF(4)), 4, 5, 6, 7, 8 b, 9, and 10 b, also by means of single-crystal X-ray diffraction.  相似文献   

20.
The reaction of nido-[7,8,9-PC(2)B(8)H(11)] (1) with [[CpFe(CO)(2)](2)] (Cp=eta(5)-C(5)H(5) (-)) in benzene (reflux, 3 days) gave an eta(1)-bonded complex [7-Fp-(eta(1)-nido-7,8,9,-PC(2)B(8)H(10))] (2; Fp=CpFe(CO)(2); yield 38 %). A similar reaction at elevated temperatures (xylene, reflux 24 h) gave the isomeric complex [7-Fp-(eta(1)-nido-7,9,10-PC(2)B(8)H(10))] (3; yield 28 %) together with the fully sandwiched complexes [1-Cp-closo-1,2,4,5-FePC(2)B(8)H(10)] 4 a (yield 30%) and [1-Cp-closo-1,2,4,8-FePC(2)B(8)H(10)] 4 b (yield 5%). Compounds 2 and 3 are isolable intermediates along the full eta(5)-complexation pathway of the phosphadicarbaborane cage; their heating (xylene, reflux, 24 h) leads finally to the isolation of compounds 4 a (yields 46 and 52%, respectively) and 4 b (yields 4 and 5%, respectively). Moreover, compound 3 is isolated as a side product from the heating of 2 (yield 10%). The structure of compound 4 a was determined by an X-ray structural analysis and the constitution of all compounds is consistent with the results of mass spectrometry and IR spectroscopy. Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B]-COSY, and (1)H[(11)B(selective)] magnetic resonance measurements led to complete assignments of all resonances and are in excellent agreement with the structures proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号