首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、引言 设A,B是n×n方阵,E≡A-B,矩阵特征值扰动问题的一种提法是[2]:给定B的特征值μ,估计|μ-λ_i|的极小值的上界,这里λ_i是A的某一个特征值。 Bauer和Fikl在1969年给出如下定理:  相似文献   

2.
孙继广 《数学学报》1981,24(6):892-903
设A与B为Hermite矩阵.若,则称矩阵对(A,B)为定型对,相应的特征值问题Ax=λBx叫做定型的.关于定型对的特征空间的扰动,Stewart教授曾在一个很强的条件下,得到了使用Frobenius范数的界限,他并且指出:“对于Hermite特征值问题,Davis和Kahan已经通过限制特征值的配置,得到了使用谱范数的界限.对于定型的广义特征值问题,这样的界限能否得到,尚未解决”.本文使用谱范数得到了定型对的特征空间的扰动界限,从而给这个问题一个肯定的回答;同时,还导出了使用Frobenius范数的扰动界限,其方法和结论都是与Stewart不同的.  相似文献   

3.
正规矩阵的任意扰动   总被引:1,自引:0,他引:1  
设A为n×n矩阵,其特征值为λ1,λ2,…,λn;矩阵B=A+X之特征值为μ1,μ2,…,μn.若A,B均为正规矩阵,由Wielandt-Hoffman定理[1],存在1,2,…,n的一个排列k1,k2,…,kn,使得nj=1|λj-μkj|2≤‖X‖2F,(1)其中‖·‖F表示Frobenius范数.又,在同样条件下,存在1,2,…,n的一个排列l1,l2,…,ln,使得对1≤j≤n均有|λj-μlj|≤2.91‖X‖2,(2)其中‖·‖2表示谱范数,这是R.Bhatia等人的结果[2].本文旨在讨论A为正规矩阵,B为任意矩阵时特征值的扰动估计,得到了几个扰动定理,分别推广了上述两个结果.本文用CH表示矩阵C的共轭转置,trC表示C的迹;…  相似文献   

4.
研究了通过矩阵A的顺序主子矩阵A_((k))=(aij)_(i,j=1)(n-k+1)的特征值{λ_i(n-k+1)的特征值{λ_i((k)))}_(i=1)((k)))}_(i=1)(n-k+1)k=1,2,…,r+1来构造一个带比例关系的实带状矩阵的特征值反问题.对当特征值{λ_i(n-k+1)k=1,2,…,r+1来构造一个带比例关系的实带状矩阵的特征值反问题.对当特征值{λ_i((k))}_(i=1)((k))}_(i=1)(n-k+1)中有多重特征值出现时,应当如何来构造这类矩阵进行了讨论,并给出了问题的具体算法及数值例子.  相似文献   

5.
夏又生 《计算数学》1993,15(3):310-317
1.引言 我们讨论下列广义特征值反问题: (G)已知B是n×n阶对称半正定矩阵,λ=(λ_1,…,λ_(2n-1))~T∈R~(2n-1),且{λ_i}~(n_3),和{λ_i}_(n+1)~(2n-1)严格交错。问题是欲求一个实对称三对角n×n阶矩阵A,使得λ_1…,λ_n是Ax=λBx的特征值,λ_(n+1),…,λ_(2n-1)是A_(n-1)x=λB_(n-1)x的特征值,其中A_(n-1),B_(n-1)分别是矩阵A,B的前n-1阶主子阵。  相似文献   

6.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

7.
矩阵反问题解的稳定性   总被引:1,自引:0,他引:1  
孙继广 《计算数学》1986,8(3):251-257
首先说明一些记号.C~(m×n):所有m×n复元素矩阵的全体,C_r~(m×n):C~(m×n)中所有秩为r的矩阵的全体.A~H:矩阵A的转置共轭.I~((n)):n行列单位矩阵.A>0表示A是正定Hermite矩阵,λ_(max)(A)与λ_(min)(A)分别表示Hermite矩阵A的最大与最小特征值,σ_(max)(A)与σ_(min)(A)分别表示矩阵A的最大与最小奇异值.A~+:A的Moors-Penrose广义逆.|| ||_2:矩阵的谱范数,|| ||_F:矩阵的Frobenius范数.  相似文献   

8.
用A表示复矩阵A的共轭转置矩阵。用λ_i(A)表示n阶复矩阵A的特征值,i=1,…,n对于n阶Hermite矩阵A,在没有特别指出的情况下,本文均约定A的n个(实)特征值按降  相似文献   

9.
关于Wielandt-Hoffman定理   总被引:6,自引:0,他引:6  
孙继广 《计算数学》1983,5(2):208-212
关于正规矩阵的任意扰动,有下述定理成立. 定理1.设A为n阶正规矩阵,C为n阶任一矩阵.A的特征值为λ_1,…,λ_n,C的特征值为μ_1…,μ_n.C~H表示C的转置共轭,||·||_2与||·||_F分别表示矩阵的谱范数与Frobenius范数.记  相似文献   

10.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

11.
正1引言文中,用M_n表示n×n复矩阵全体,用‖·‖表示任意的酉不变范数,分别用|λ_n(A)|≤…≤|λ_1(A)|,s_n(A)≤…≤s1(A)来表示矩阵A的特征值和奇异值,用|A|=(A~*A)~(1/2)表示A的绝对值算子.  相似文献   

12.
关于正规矩阵特征值的扰动   总被引:19,自引:2,他引:17  
孙继广 《计算数学》1984,6(3):334-336
设N与A均为n×n正规矩阵,其特征值分别为{v_i}_(i=1)~n与{α_i}_(i=1)~n。Hoffman和Wielandt证明了:存在1,2,…,n的一个排列π(1),π(2),…,π(n),使得|| ||_F表示Frobenius范数。 当N为n×n Hermite矩阵,A为n×n可对称化矩阵,即存在非奇异矩阵Q=I X,使得Q~(-1)AQ为Hermite矩阵时,Stewart证明了:如果N与A的特征值分别  相似文献   

13.
李仁仓 《计算数学》1989,11(1):10-19
1.引言 关于普通特征值扰动的Bauer-Fike定理已被推广到A为非可对角化的情形.与此相应,广义特征值的扰动问题,亦有类似的结论.将[1]中的结论稍加改进并且推广至一般正则对的情形,是本文一部分内容,另一部分是研究广义近似特征值以及广义近似不变子空间的特征值扰动,本文采用的范数不局限于谱范数,而是一般的p-范数(1≤p≤+∞).  相似文献   

14.
邓健新 《计算数学》1985,7(1):103-105
任一n×n矩阵A可分解为A=B C,其中B=1/2(A A~H),C=1/2(A-A~H)。Bendixson定理的主要内容是:λ_j(A)(j=1,2,…,n)落在矩形区域F上,而构成F的四个边的直线分别为x=max(λ_j(B)),x=min(λ_j(B)),y=max(-iλ_j(C)),y=min(-iλ_j(C))。本文给出用B,C的特征值和矩阵A的正规性偏离度对A的特征值的进一步估计。  相似文献   

15.
本文研究如下周期Jacobi矩阵特征值问题的反问题: 问题PJP 给定实数列{λ_i}_(i=1)~n和{u_i}_(i=1)~(n-1)及正实数β且满足  相似文献   

16.
非齐次对称特征值问题   总被引:5,自引:0,他引:5  
引言 用SR~(n×n)表示所有。n×n实对称矩阵的集合。R~n表示n维线性空间。||·||_2表示向量的Euclid范数或矩阵的谱范数。 本文研究如下问题: 问题ISEP 给定矩阵A∈SR~n×n和向量b∈R~n,求实数λ和向量X∈R~n使得 AX=λX+b, (1) ||X||_2=1. (2) 若b=0,则问题ISEP就是通常的实对称矩阵特征值问题,若b≠0,则问题ISEP称为非齐次对称特征值问题,使(1)和(2)式成立的数λ和向量X分别称为非齐次特征值和相应的非齐  相似文献   

17.
1 引 言 本文研究了广义特征值问题 Ax=λBx (1)的并行计算。其中,A,B均为半带宽为r的n阶实对称带状矩阵且其中之一是正定的.本文总假设B是正定的.  相似文献   

18.
一类特殊矩阵的逆特征值问题   总被引:9,自引:0,他引:9  
徐寅峰 《应用数学》1993,6(1):68-75
本文主要讨论如下形式矩阵的逆特征值问题:即对给定n个实数λ_1>λ_2>…>λ_2与n-1个实数μ_1>μ_2>…>μ_(n-1),满足λ_1>μ_1>λ_2>…>λ_(n-1)>μ_(n-1)>λ_n,在α_2>α_3>…>α_(n-1)的条件下,存在唯一的一个矩阵A_n是以λ_i为其特征值;且其截边矩阵的特征值为μ_1,μ_2,…,μ_(n-1).  相似文献   

19.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

20.
<正> 设Z~(nxn)={A=(a_(ij))∈■~(nxn)|a_(ij)≤0,i≠j},若A=fI-B∈Z~(nxn),B≥0,t≥ρ(B)(B的谱半径),则称A为准M—矩阵,记为A∈(?)_0;特别地,若t>ρ(B),则称A为M—矩阵,记为A∈K.关于M—矩阵特征值问题的研究,佟文廷在文[1]中首先推进了M—矩阵特征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号