首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
研究了五甲川菁敏化SnO~2纳米结构电极的光电化学行为。结合循环伏安曲线图及五甲川菁的光吸收阈值,初步确定五甲川菁染料电子基态和激发态能级位置。结果表明,五甲川菁染料电子激发态能级位置能与SnO~2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著地提高SnO~2纳米结构电极的光电流,使SnO~2纳米结构电极吸收波长红移至可见光区和近红外区,光电转换效率得到明显改善,IPCE值(单色光的转换效率)最高可达45.7%。  相似文献   

2.
研究了五甲川菁(PMC)敏化SnO2纳米结构电极的光电化学行为.结合循环伏安曲线及五甲川菁的光吸收阈值,初步确定了五甲川菁染料电子基态和激发态能级.结果表明,五甲川菁染料电子激发态能级能与SnO2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著地提高SnO2纳米结构电极的光电流,使SnO2纳米结构电极吸收波长红移至可见光区和近红外区,光电转换效率(IPCE)得到明显改善,其值最高可达45.7%.  相似文献   

3.
PMC敏化SnO2纳米结构多孔膜电极的光电化学特性   总被引:1,自引:1,他引:0  
研究了五甲川菁(PMC)敏化SnO2纳米结构电极的光电化学行为.结合循环伏安曲线及五甲川菁的光吸收阈值,初步确定了五甲川菁染料电子基态和激发态能级.结果表明,五甲川菁染料电子激发态能级能与SnO2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著地提高SnO2纳米结构电极的光电流,使SnO2纳米结构电极吸收波长红移至可见光区和近红外区,光电转换效率(IPCE)得到明显改善,其值最高可达45.7%.  相似文献   

4.
应用光电化学方法研究了两种菁类染料Cy3和Cy5复合敏化TiO2纳米晶电极的光电化学行为. 结合两种染料的紫外-可见光谱和循环伏安曲线, 确定了Cy3和Cy5的电子基态和激发态能级位置. 结果表明两种染料的激发态能级位置能与TiO2纳米粒子导带边位置相匹配, 复合敏化可以显著提高TiO2纳米晶的光电流, 使TiO2纳米晶电极吸收波长由紫外光区红移至可见光区和近红外区. 复合敏化降低了染料Cy3在电极吸附时的聚集程度, 使其单色光的转换效率(IPCE)提高了169%, 复合敏化电极总的光电转换效率η为2.09%, 分别是Cy3和Cy5单独敏化时光电转换效率的2.069和1.229倍.  相似文献   

5.
应用光电化学方法研究了两种菁类染料Cy3和Cy5复合敏化TiO2纳米晶电极的光电化学行为.结合两种染料的紫外-可见光谱和循环伏安曲线,确定了Cy3和Cy5的电子基态和激发态能级位置.结果表明两种染料的激发态能级位置能与TiO2纳米粒子导带边位置相匹配,复合敏化可以显著提高TiO2纳米晶的光电流,使TiO2纳米晶电极吸收波长由紫外光区红移至可见光区和近红外区.复合敏化降低了染料Cy3 在电极吸附时的聚集程度,使其单色光的转换效率(IPCE)提高了169%,复合敏化电极总的光电转换效率η为2.09%,分别是Cy3和Cy5单独敏化时光电转换效率的2.069 和1.229倍.  相似文献   

6.
N,N′-对羧苄基吲哚三菁敏化纳米TiO2电极的研究   总被引:1,自引:0,他引:1  
应用光电化学方法研究了N, N′-对羧苄基吲哚三菁(Cy5)染料敏化TiO2纳米晶电极的光电化学行为,优化了敏化的条件.结合Cy5的循环伏安曲线和光吸收阈值,初步确定Cy5电子基态和激发态能级位置.结果表明,Cy5电子激发态能级位置能与TiO2纳米粒子导带边位置相匹配,因而使用该染料敏化可以显著提高TiO2纳米晶的光电流,使TiO2纳米晶电极吸收波长由紫外光区红移至可见光区和近红外区,光电转换效率得到明显改善,在膜厚为6.5μm、敏化时间为6 h的条件下IPCE值(incident photo-to-electricity conversion efficiency)最高可达46.4%,总的光电转换效率η为1.70%.  相似文献   

7.
采用新染料五甲川菁(Penta Methyl Cyanine)敏化TiO2纳米结构电极,UV-Vis吸收光谱和光电化学结果表明,使用该染料敏化使TiO2纳米结构电极吸收波长红移至可见光区和近红外区,可显著地提高TiO2纳米结构电极在可见光区的阳极光电流强度,明显改善光电转换效率.结合吸收光谱、电化学和光电化学结果初步讨论了敏化电极的光生电流的机理.  相似文献   

8.
用光电化学方法研究了不对称菁类染料敏化TiO2纳米结构电极的光电转换过程.结果表明,该染料的电子激发态能级位置与TiO2纳米粒子导带边位置匹配较好,光激发染料后,其激发态电子可以注入到TiO2纳米多孔膜的导带,从而使TiO2纳米结构电极的吸收光谱和光电流谱红移至可见光区,其 IPCE(Incident photon-to-electron conversion efficiency)值最高可达84.3%.并进一步结合现场紫外-可见吸收光谱研究了外加电势对激发态染料往TiO2纳米多孔膜注入电子过程的影响.  相似文献   

9.
五甲川菁染料敏化p-NiO纳米结构电极的光电化学   总被引:4,自引:0,他引:4  
研究了NiO纳米结构电极及五甲川菁染料敏化NiO纳米结构电极的光电化学行为。结果表明,NiO纳米结构电极在光照下产生阴极光电流,为p-型半导体,其禁带宽度为2.8eV,使用五甲川菁染料敏化可以显著地提高NiO纳米结构电极的阴极光电流,使NiO纳米结构电极吸收波长红移至可见光区,光电转换效率得到明显改善。研究了OTE/TiO~2/Ru(bpy)~2(SCN)~2和OTE/NiO/PMC作为光阳极和光阴极组成电池的电池特性,结果表明复合电池的光电压提高,但光电流的大小受光电流小的电极限制。  相似文献   

10.
采用新染料五甲川菁(Penta Methyl Cyanine)敏化TiO2纳米结构电极,UV-Vis吸收光谱和光电化学结果表明,使用该染料敏化使TiO2纳米结构电极吸收波长红移至可见光区和近红外区,可显著地提高TiO2纳米结构电极在可见光区的阳极光电流强度,明显改善光电转换效率。结合吸收光谱、电化学和光电化学结果初步讨论了敏化电极的光生电流的机理。  相似文献   

11.
三甲川菁染料敏化TiO2纳米结构电极的光电化学   总被引:3,自引:0,他引:3  
研究了三甲川菁染料敏化TiO2 纳米结构电极的光电化学行为.结果表明,使用该染料敏化可显著提高TiO2 纳米结构电极的光电流,使电极的吸收波长红移至可见光区,光电转换效率得到明显改善,IPCE值最高可达12-1 % .  相似文献   

12.
三甲川菁染料敏化TiO2纳米 结构电极的光电化学   总被引:1,自引:0,他引:1  
The photoelectrochemical behaviors of the TiO2 nanostructured porous film sensitized by cyanine dye were investigated in this paper.The results showed that the excitaed state level matched the conduction band edge of TiO2 nanoparticle.Therefore the sensitization of the dye can increase the photocurrent intensity of the TiO2 nanostructured electrode obviously and results in a red-shift of optical absorption from the ultra-violet region to the visible.As a result,the light-to-electricity conversion efficiency was improved evidently,the maximum value of IPCE has reached 12.1%.  相似文献   

13.
介电限域效应对SnO_2纳米微粒光学特性的影响   总被引:1,自引:0,他引:1  
半导体纳米微粒作为一种新兴材料,在声、光、电、磁、热及催化等方面显示出全新的异于体相材料和分子或原子的特性,在理论和实验上已引起。们极大的兴趣I‘,’].当纳米微粒的尺寸接近或小于激于玻尔半径时,表现出明显的量子尺寸效应,其表现光学能隙变大,一些半导体粒子如CdS,Cdse等纳米微粒的量予尺寸效应已经被人们利用有效质量近似模型做了定性解释。八但是,由于纳米微粒尺寸小,具有相对大的表面积,因而粒子周围的介质可以强烈地影响它们的光学性质【’,‘1.我们采用胶体化学方法,对SnO。阶电常数为13)半导体纳米微粒…  相似文献   

14.
X-ray excited optical luminescence (XEOL) and x-ray absorption near-edge structure in total electron, x-ray fluorescence, and photoluminescence yields at Sn M5,4-, O K-, and Sn K-edges have been used to study the luminescence from SnO2 nanoribbons. The effect of the surface on the luminescence from SnO2 nanoribbons was studied by preferential excitation of the ions in the near-surface region and at the normal lattice positions, respectively. No noticeable change of luminescence from SnO2 nanoribbons was observed if the Sn ions in the near-surface region were excited selectively, while the luminescence intensity changes markedly when Sn or O ions at the normal lattice positions were excited across the corresponding edges. Based on the experimental results, we show that the luminescence from SnO2 nanoribbons is dominated by energy transfer from the excitation of the whole SnO2 lattice to the surface states. Surface site specificity is not observable due to its low concentration and weak absorption coefficient although the surface plays an important role in the emission as a luminescence center. The energy transfer and site specificity of the XEOL or the lack of the site specificity from a single-phase sample is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号