首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

2.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

3.
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.  相似文献   

4.
This paper presents a procedure for predicting the response of Duffing system with time-delayed feedback control under bounded noise excitation by using stochastic averaging method. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged It? stochastic differential equations for the system are derived by using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker?CPlank?CKolmogorov equation associated with the averaged It? equations. It is shown that the time delay in feedback control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing system. The validity of the proposed method is confirmed by digital simulation.  相似文献   

5.
This article investigates the chaotic Lotka–Volterra system as an optimal nonlinear design problem for biological pest control strategies. In the biological control strategy, natural enemies are introduced such that the pest density is stabilized below the economic injury level, and the population of natural enemies remains sufficiently high to control the pests. Applying dynamic programming, this problem was reduced to the Hamilton–Jacobi–Bellman equation. The functions satisfying the reduced equation were obtained among the correspondent Lyapunov functions of the considered Lotka–Volterra system. A closed-form optimal feedback control law was derived. The effectiveness of the method is verified by numerical simulations of biological pest control. The biological implications of these results are also discussed.  相似文献   

6.
Optimal control system of state space is a conservative system, whose approximate method should be symplectic conservation. Based on the precise integration method, an algorithm of symplectic conservative perturbation is presented. It gives a uniform way to solve the linear quadratic control (LQ control) problems for linear time-varying systems accurately and efficiently, whose key points are solutions of differential Riccati equation (DRE) with variable coefficients and the state feedback equation. The method is symplectic conservative and has a good numerical stability and high precision. Numerical examples demonstrate the effectiveness of the proposed method.  相似文献   

7.
A weakly nonlinear oscillator is modeled by a differential equation. A superharmonic resonance system can have a saddle-node bifurcation, with a jumping transition from one state to another. To control the jumping phenomena and the unstable region of the nonlinear oscillator, a combination of feedback controllers is designed. Bifurcation control equations are derived by using the method of multiple scales. Furthermore, by performing numerical simulations and by comparing the responses of the uncontrolled system and the controlled system, we clarify that a good controller can be obtained by changing the feedback control gain. Also, it is found that the linear feedback gain can delay the occurrence of saddle-node bifurcations, while the nonlinear feedback gain can eliminate saddle-node bifurcations. Feasible ways of further research of saddle-node bifurcations are provided. Finally, we show that an appropriate nonlinear feedback control gain can suppress the amplitude of the steady-state response.  相似文献   

8.
Optimal control system of state space is a conservative system, whose approximate method should be symplectic conservation. Based on the precise integration method, an algorithm of symplectic conservative perturbation is presented.It gives a uniform way to solve the linear quadratic control (LQ control) problems for linear time-varying systems accurately and efficiently, whose key points are solutions of differential Riccati equation (DRE) with variable coefficients and the state feedback equation.The method is symplectic conservative and has a good numerical stability and high precision. Numerical examples demonstrate the effectiveness of the proposed method.  相似文献   

9.
A control system with state feedback controllers, in which the fuzzy Lyapunov approach is developed for the stability criterion, is studied. The proposed intelligent design provides a systematic and effective framework for the control systems. The global nonlinear controller is constructed based on T–S (Takagi–Sugeno) fuzzy controller design techniques, blending all such local state feedback controllers. Based on this design, the stability conditions of a multiple time-delay system are derived in terms of the fuzzy Lyapunov theory. The effectiveness and the feasibility of the proposed controller design method are demonstrated through numerical simulations.  相似文献   

10.
研究了一类基于相对速度反馈的含立方刚度的单自由度非线性半主动隔振系统.通过平均法得到了系统分别在基于加速度-相对速度反馈的加速度驱动阻尼控制策略、速度-相对速度反馈的天棚阻尼控制策略和位移-相对速度反馈的地棚阻尼控制策略下主共振响应的近似解析解,并利用数值解验证了近似解析解的准确性.通过 Lyapunov 理论对不同控制策略下系统的稳定性进行了分析,讨论了系统参数对控制效果的影响.分析结果表明,对 3 种基于相对速度反馈的控制策略进行解析研究时,切换条件中的控制参数具有相同的表达式;在抑制共振响应振幅方面,基于速度-相对速度反馈的天棚阻尼控制策略在低频时的减振效果最好,而基于加速度-相对速度反馈的加速度驱动阻尼控制策略在高频时的减振效果最优;在抑制瞬态响应振幅方面,基于速度-相对速度反馈的天棚阻尼控制策略的减振效果最好.此类解析研究方法可应用到其他半主动开关控制策略中,为半主动隔振系统的控制策略研究提供了有效的方法和手段.  相似文献   

11.
研究了一类基于相对速度反馈的含立方刚度的单自由度非线性半主动隔振系统.通过平均法得到了系统分别在基于加速度-相对速度反馈的加速度驱动阻尼控制策略、速度-相对速度反馈的天棚阻尼控制策略和位移-相对速度反馈的地棚阻尼控制策略下主共振响应的近似解析解,并利用数值解验证了近似解析解的准确性.通过 Lyapunov 理论对不同控制策略下系统的稳定性进行了分析,讨论了系统参数对控制效果的影响.分析结果表明,对 3 种基于相对速度反馈的控制策略进行解析研究时,切换条件中的控制参数具有相同的表达式;在抑制共振响应振幅方面,基于速度-相对速度反馈的天棚阻尼控制策略在低频时的减振效果最好,而基于加速度-相对速度反馈的加速度驱动阻尼控制策略在高频时的减振效果最优;在抑制瞬态响应振幅方面,基于速度-相对速度反馈的天棚阻尼控制策略的减振效果最好.此类解析研究方法可应用到其他半主动开关控制策略中,为半主动隔振系统的控制策略研究提供了有效的方法和手段.   相似文献   

12.
This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.  相似文献   

13.
一种基于比例反馈控制原理的动载荷时域反演方法   总被引:1,自引:0,他引:1  
通过借鉴系统控制论中的比例反馈控制原理,提出了一种新的结构动载荷时域反演方法.该方法在原开环系统的输出与结构模型之间连接一个虚拟的比例反馈增益,使得原来的开环系统成为一个虚拟的闭环反馈控制系统,系统控制信号为实测的结构加速度响应.反馈控制器将系统输出与控制信号之闻的差值进行放大后作为反馈不断输入到结构模型中,直到差值趋于稳定,此时该差值与反馈增益的乘积经过高通滤波后即得到所反演的动态载荷.该方法将载荷反演问题的求解转化为正问题中的结构瞬态响应求解,采用一般的数值解法如New-mark法即可实现,因此计算比较简便迅速.该方法仅需要测量结构的加速度响应即可进行反演,便于实际应用,而且并不十分依赖于真实的初始条件,由于不存在误差累积的现象,反演结果具有较好的稳定性.最后,通过海洋平台结构冰载荷反演的模型实验和数值仿真证明了该方法的有效性.  相似文献   

14.
The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the active damping. The cubic nonlinear equation of motion with damping is established by employing Hamilton’s principle. The multiple-scale method is used to solve the equation of motion, and the stable region is obtained. The effects of the control gain and the amplitude of the external force on the stable region and the amplitude-frequency curve are analyzed numerically. From the numerical results, it is seen that, with the increase in the feedback control gain, the axial force, to which the structure can be subjected, is increased, and in a certain scope, the structural active damping ratio is also increased. With the increase in the control gain, the response amplitude decreases gradually, but the required control voltage exists a peak value.  相似文献   

15.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

16.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

17.
This paper studies the delayed feedback control of flutter of a two-dimensional airfoil using a sliding mode control (SMC) method. The dynamic equation of airfoil flutter is firstly established using the Lagrange method, in which the cubic hardening spring nonlinearity of pitch stiffness is considered. Then, the state equation with time delay is transformed into a standard state equation with implicit time delay by a special integral transformation. Next a nonlinear time-delay controller is designed using the SMC method. Finally the effectiveness of the proposed controller is verified through numerical simulations. Simulation results indicate that time delay in the control system has significant influence on the control performance. Control failure may happen if time delay is not considered in control design. The time-delay controller proposed is effective in suppressing the airfoil flutter with either small or large control time delay.  相似文献   

18.
研究了亚音速气流下非线性二维薄板结构在横向周期载荷作用下的混沌运动及控制问题。基于von Karman大变形板理论和分离变量法,建立了亚音速下薄板结构的运动控制方程。对于未控系统,采用Melnikov方法判断其混沌运动阈值,并用Runge-Kutta法进行数值验证。对处于混沌运动状态的系统,采用时滞反馈控制方法对混沌运动进行控制。结果表明,Melnikov方法可以有效地预测系统的混沌运动行为,时滞反馈控制方法可以有效地将系统的混沌运动转化为周期运动。  相似文献   

19.
Jerk dynamics is used for a new method for the suppression of self-excited vibrations in nonlinear oscillators. Two cases are considered, the van der Pol equation and nonlinear oscillator with quadratic and cubic nonlinearities. A nonlocal control force is introduced in such a way to obtain a third order nonlinear differential equation (jerk dynamics). Using the asymptotic perturbation method, two slow flow equations on the amplitude and phase of the response are obtained, and subsequently the performance of the control strategy is investigated. The feedback gains are connected with the stability and response of the system under control. Uncontrolled and controlled systems are compared and the appropriate choices for the feedback gains are found in order to reduce the amplitude peak of the self-excitations. Numerical simulation confirms the validity of the new method.  相似文献   

20.
A procedure for studying the first-passage failure of strongly non-linear oscillators with time-delayed feedback control under combined harmonic and wide-band noise excitations is proposed. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method. A backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. An example is worked out in detail to illustrate the proposed procedure. The effects of time delay in feedback control forces on the conditional reliability function, conditional probability density and moments of first-passage time are analyzed. The validity of the proposed method is confirmed by digital simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号