首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
一类不确定非线性系统的鲁棒自适应ε2输出跟踪控制   总被引:2,自引:1,他引:2  
针对一类不确定非线性系统,讨论了鲁棒自适应ε-输出跟踪问题.利用Backstepping方法设计了一种自适应光滑状态反馈控制器,使系统输出跟踪给定的C^1参考输出信号.在参考信号及其导数均有界的条件下,得到了全局ε-输出跟踪,且闭环系统所有信号均全局一致有界.仿真结果表明了该设计方法的有效性.  相似文献   

2.
针对非线性离散系统设计了利用TSK(Takagi Sugeno Kang)模糊模型的自适应PID控制器。利用模糊模型预测控制信号误差,通过控制信号误差自适应PID控制器参数。比较系统输出和模糊模型输出自适应模糊模型的参数。该方法可以弥补系统参数的模糊性、数学模型的模型误差和系统参数的变化。非线性离散系统的仿真实验验证了所设计的自适应PID控制器对非线性离散系统控制的有效性。  相似文献   

3.
基于观测器的一类非线性系统的自适应模糊控制   总被引:1,自引:1,他引:0  
针对一类有界的不确定非线性系统设计了模糊观测器和自适应控制器.该方法不需要系统状态完全可测的条件,而是通过模糊观测器估计系统的状态变量并且能保证观测误差是一致最终有界的.该自适应控制器取得了良好的控制效果并且保证了跟踪误差的一致最终有界性.仿真结果表明了本文所提出的方法有效性.  相似文献   

4.
一类非线性非最小相位系统的直接自适应控制   总被引:1,自引:0,他引:1  
针对一类不确定的离散时间非线性非最小相位动态系统,提出了一种基于神经网络和多模型的直接自适应控制方法.该控制方法由线性直接自适应控制器,神经网络非线性直接自适应控制器以及切换机构组成.线性控制器用来保证闭环系统输入输出信号有界,非线性控制器用来改善系统性能.切换策略通过对上述两种控制器的切换,保证闭环系统输入输出有界的同时,改善了系统性能.理论分析以及仿真结果表明了所提出的直接自适应控制方法的有效性.  相似文献   

5.
研究了一类具有不可控不稳定线性化的非线性系统的自适应控制问题.该类系统的控制方向未知且含有不确定时变非线性参数.应用Nussbaum-type增益技术和adding a power integrator递推设计方法,设计了一种鲁棒自适应状态反馈控制器.所设计的控制器能够保证闭环系统的所有信号全局一致有界,且系统的状态渐近趋于零.除了假设未知参数及不确定性有界外,所设计的控制策略不需要控制系数的任何先验知识.仿真例子验证了算法的有效性.  相似文献   

6.
针对一类不确定非线性离散系统,提出一种带有自动可调伸缩因子的模糊自适应控制方法.该控制器设计方法的优点是模糊逻辑系统的逼近精度不再依赖于模糊逻辑系统的结构和规则数目,参数自适应律调节与被逼近函数的特征和逼近精度有关,因此能有效减少在线估计的参数数目,且设计方法能够保证闭环系统的所有状态半全局一致终极有界.最后,通过数值仿真算例表明所提出方法的有效性.  相似文献   

7.
一类非线性离散系统的直接自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类含延迟非线性离散系统,提出了一种直接自适应模糊控制器设计的新方案.将系统用T-S模糊模型来表示,并基于并行分布补偿(PDC)基本思想设计了一种具有未知参数的模糊控制器,同时采用梯度下降算法对该控制器的参数进行在线辨识.通过输入到状态稳定(ISS)方法,证明了系统输出和参考输出的误差有界且满足一定的平均性能.仿真表明本方法的有效性.  相似文献   

8.
带有输入和状态时滞的高阶非线性前馈系统的自适应控制   总被引:1,自引:1,他引:0  
本文考虑了一类高阶不确定非线性前馈系统的自适应镇定问题.将高阶非线性进一步放宽到不仅允许状态时滞,而且还具有未知增长率.通过将自适应方法、动态增益控制方法和增加幂次积分器法结合,设计了一个状态反馈控制器.所设计的控制器保证了闭环系统的所有信号有界,平衡点全局稳定,并且原状态收敛到0.  相似文献   

9.
一类非线性时滞输出反馈系统的自适应控制   总被引:8,自引:2,他引:8       下载免费PDF全文
针对一类参数化非线性时滞输出反馈系统,提出了一种无记忆自适应跟踪控制器的设计方案.采用时滞滤波器估计系统状态,用Domination处理非线性时滞项,应用Backstepping技术设计控制器和参数自适应律.放宽了对时滞项的要求.通过构建一个Lyapunov_Krasoviskii泛函,证明了闭环系统的稳定性,实现了对目标轨线的渐近跟踪,保证了所有信号一致有界.实例仿真说明了该方案的可行性.  相似文献   

10.
王珂  高立群  刘佳  韩杰 《控制与决策》2006,21(3):356-360
讨论不确定时滞组合系统的分散自适应鲁棒镇定问题.外部扰动存在于子系统内部,可以是非线性或时变的,且不确定项和时滞存在于互联项中.不确定项和外部扰动是有界的,但上界未知.利用自适应律估计未知的上界,设计了非线性无记忆控制器.采用非线性控制器可保证闭环组合系统的解一致有界。且系统状态是一致渐近稳定的.仿真结果表明了该设计方法的有效性.  相似文献   

11.
In this study, a robust adaptive control (RAC) system is developed for a class of nonlinear systems. The RAC system is comprised of a computation controller and a robust compensator. The computation controller containing a radial basis function (RBF) neural network is the principal controller, and the robust compensator can provide the smooth and chattering-free stability compensation. The RBF neural network is used to approximate the system dynamics, and the adaptive laws are derived to on-line tune the parameters of the neural network so as to achieve favorable estimation performance. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. To investigate the effectiveness of the RAC system, the design methodology is applied to control two nonlinear systems: a wing rock motion system and a Chua’s chaotic circuit system. Simulation results demonstrate that the proposed RAC system can achieve favorable tracking performance with unknown of the system dynamics.  相似文献   

12.
The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.  相似文献   

13.
An adaptive recurrent cerebellar-model-articulation-controller (RCMAC) sliding-mode control (SMC) system is developed for the uncertain nonlinear systems. This adaptive RCMAC sliding-model control (ARCSMC) system is composed of two systems. One is an adaptive RCMAC system utilized as the main controller, in which an RCMAC is designed to identify the system models. Another is a robust controller utilized to achieve system’s robust characteristics, in which an uncertainty bound estimator is developed to estimate the uncertainty bound so that the chattering phenomenon of control effort can be eliminated. The on-line adaptive laws of the ARCSMC system are derived in the sense of Lyapunov so that the system stability can be guaranteed. Finally, a comparison between SMC and ARCSMC for a chaotic system and a car-following system are presented to illustrate the effectiveness of the proposed ARCSMC system. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for the chaotic system and car-following systems without the knowledge of system dynamic functions.  相似文献   

14.
为了提高三相异步电机矢量控制的性能,在传统的转速PID控制器的基础上,建立模糊PID控制器,利用Matlab/Simulink搭建基于三相异步电动机转速控制的模糊PID系统,分别使用常规PID控制器与模糊PID控制器进行控制,并进行比较。仿真结果表明模糊控制能使系统取得较好的控制性能并具有较强的鲁棒性。  相似文献   

15.
This paper presents deterministic learning from adaptive neural network control of affine nonlinear systems with completely unknown system dynamics. Thanks to the learning capability of radial basis function, neural network (NN), stable adaptive NN controller is designed for the unknown affine nonlinear systems. The designed adaptive NN controller is rigorously shown that learning of the unknown closed-loop system dynamics can be achieved during the stable control process because partial persistent excitation condition of some internal signals in the closed-loop system is satisfied. Subsequently, neural learning controller using the knowledge obtained from deterministic learning is constructed to achieve closed-loop stability and improve control performance. Numerical simulation is provided to show the effectiveness of the proposed control scheme.  相似文献   

16.
This article presents a direct adaptive fuzzy control scheme for a class of uncertain continuous-time multi-input multi-output nonlinear (MIMO) dynamic systems. Within this scheme, fuzzy systems are employed to approximate an unknown ideal controller that can achieve control objectives. The adjustable parameters of the used fuzzy systems are updated using a gradient descent algorithm that is designed to minimize the error between the unknown ideal controller and the fuzzy controller. The stability analysis of the closed-loop system is performed using a Lyapunov approach. In particular, it is shown that the tracking errors are bounded and converge to a neighborhood of the origin. Simulations performed on a two-link robot manipulator illustrate the approach and exhibit its performance.  相似文献   

17.
A deterministic learning theory was recently presented which states that an appropriately designed adaptive neural controller can learn the system internal dynamics while attempting to control a class of nonlinear systems in normal form. In this paper, we further investigate deterministic learning of the class of nonlinear systems with relaxed conditions, and neural control of the class of system toward improved performance. Firstly, without the assumption on the upper bound of the derivative of the unknown affine term, an adaptive neural controller is proposed to achieve stability and tracking of the plant states to that of the reference model. When output tracking is achieved, a partial PE condition is satisfied, and deterministic learning from adaptive neural control of the class of nonlinear systems is implemented without the priori knowledge on the upper bound of the derivative of the affine term. Secondly, by utilizing the obtained knowledge of system dynamics, a neural controller with constant RBF networks embedded is presented, in which the learned knowledge can be effectively exploited to achieve stability and improved control performance. Simulation studies are included to demonstrate the effectiveness of the results.  相似文献   

18.
Intelligent adaptive control for MIMO uncertain nonlinear systems   总被引:3,自引:1,他引:2  
This paper investigates an intelligent adaptive control system for multiple-input–multiple-output (MIMO) uncertain nonlinear systems. This control system is comprised of a recurrent-cerebellar-model-articulation-controller (RCMAC) and an auxiliary compensation controller. RCMAC is utilized to approximate a perfect controller, and the parameters of RCMAC are on-line tuned by the derived adaptive laws based on a Lyapunov function. The auxiliary compensation controller is designed to suppress the influence of residual approximation error between the perfect controller and RCMAC. Finally, two MIMO uncertain nonlinear systems, a mass–spring–damper mechanical system and a Chua’s chaotic circuit, are performed to verify the effectiveness of the proposed control scheme. The simulation results confirm that the proposed intelligent adaptive control system can achieve favorable tracking performance with desired robustness.  相似文献   

19.
This paper focuses on the adaptive finite-time neural network control problem for nonlinear stochastic systems with full state constraints. Adaptive controller and adaptive law are designed by backstepping design with log-type barrier Lyapunov function. Radial basis function neural networks are employed to approximate unknown system parameters. It is proved that the tracking error can achieve finite-time convergence to a small region of the origin in probability and the state constraints are confirmed in probability. Different from deterministic nonlinear systems, here the stochastic system is affected by two random terms including continuous Brownian motion and discontinuous Poisson jump process. Therefore, it will bring difficulties to the controller design and the estimations of unknown parameters. A simulation example is given to illustrate the effectiveness of the designed control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号