首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of community structures in the weighted complex networks is significant to understand the network structures and analysis of the network properties. We present a unique algorithm to detect overlapping communities in the weighted complex networks with considerable accuracy. For a given weighted network, all the seed communities are first extracted. Then to each seed community, more community members are absorbed using the absorbing degree function. In addition, our algorithm successfully finds common nodes between communities. The experiments using some real-world networks show that the performance of our algorithm is satisfactory.  相似文献   

2.
Detecting local communities in real-world graphs such as large social networks, web graphs, and biological networks has received a great deal of attention because obtaining complete information from a large network is still difficult and unrealistic nowadays. In this paper, we define the term local degree central node whose degree is greater than or equal to the degree of its neighbor nodes. A new method based on the local degree central node to detect the local community is proposed. In our method, the local community is not discovered from the given starting node, but from the local degree central node that is associated with the given starting node. Experiments show that the local central nodes are key nodes of communities in complex networks and the local communities detected by our method have high accuracy. Our algorithm can discover local communities accurately for more nodes and is an effective method to explore community structures of large networks.  相似文献   

3.
Zhihao Wu  Youfang Lin 《Physica A》2012,391(7):2475-2490
The detection of overlapping community structure in networks can give insight into the structures and functions of many complex systems. In this paper, we propose a simple but efficient overlapping community detection method for very large real-world networks. Taking a high-quality, non-overlapping partition generated by existing, efficient, non-overlapping community detection methods as input, our method identifies overlapping nodes between each pair of connected non-overlapping communities in turn. Through our analysis on modularity, we deduce that, to become an overlapping node without demolishing modularity, nodes should satisfy a specific condition presented in this paper. The proposed algorithm outputs high quality overlapping communities by efficiently identifying overlapping nodes that satisfy the above condition. Experiments on synthetic and real-world networks show that in most cases our method is better than other algorithms either in the quality of results or the computational performance. In some cases, our method is the only one that can produce overlapping communities in the very large real-world networks used in the experiments.  相似文献   

4.
Community structure is an important feature in many real-world networks, which can help us understand structure and function in complex networks better. In recent years, there have been many algorithms proposed to detect community structure in complex networks. In this paper, we try to detect potential community beams whose link strengths are greater than surrounding links and propose the minimum coupling distance (MCD) between community beams. Based on MCD, we put forward an optimization heuristic algorithm (EAMCD) for modularity density function to welded these community beams into community frames which are seen as a core part of community. Using the principle of random walk, we regard the remaining nodes into the community frame to form a community. At last, we merge several small community frame fragments using local greedy strategy for the modularity density general function. Real-world and synthetic networks are used to demonstrate the effectiveness of our algorithm in detecting communities in complex networks.  相似文献   

5.
虚拟社区网络的演化过程研究   总被引:4,自引:0,他引:4       下载免费PDF全文
张立  刘云 《物理学报》2008,57(9):5419-5424
模拟了虚拟社区网络的演化过程并研究其拓扑结构.发现虚拟社区网络在演化过程中,节点的加入、边的加入、网络中度分布、节点的度与其加入网络时间的关系、平均度随时间的变化等方面与传统的无标度网络有所不符.根据国内某论坛的实际网络数据统计与分析,提出了虚拟社区网络的演化机理——虚拟社区网络构造算法.仿真结果表明,模拟以互联网论坛为代表的虚拟社区网络时,该模型能够得到与真实网络相符的特性. 关键词: 复杂网络 虚拟社区 无标度网络  相似文献   

6.
In this paper, we propose a well targeted algorithm (GAS algorithm) for detecting communities in high clustered networks by presenting group action technology on community division. During the processing of this algorithm, the underlying community structure of a clustered network emerges simultaneously as the corresponding partition of orbits by the permutation groups acting on the node set are achieved. As the derivation of the orbit partition, an algebraic structure r-cycle can be considered as the origin of the community. To be a priori estimation for the community structure of the algorithm, the community separability is introduced to indicate whether a network has distinct community structure. By executing the algorithm on several typical networks and the LFR benchmark, it shows that this GAS algorithm can detect communities accurately and effectively in high clustered networks. Furthermore, we compare the GAS algorithm and the clique percolation algorithm on the LFR benchmark. It is shown that the GAS algorithm is more accurate at detecting non-overlapping communities in clustered networks. It is suggested that algebraic techniques can uncover fresh light on detecting communities in complex networks.  相似文献   

7.
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network.In this paper,we propose an effective and efficient algorithm,called Dominant Label Propagation Algorithm(Abbreviated as DLPA),to detect communities in complex networks.The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously.Our algorithm is very efficient,since its computational complexity is almost linear to the number of edges in the network.Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.  相似文献   

8.
Xue Li 《Physics letters. A》2019,383(21):2481-2487
How to better and faster identify the community structure is a hot issue in complex networks. During the past decades, various attempts have been made to solve this issue. Amongst them, without doubt, label propagation algorithm (LPA) is one of the most satisfying answers, especially for large-scale networks. However, it has one major flaw that when the community structure is not clear enough, a monster community tends to form. To address this issue, we set a growth curve for communities, gradually increasing from a low capacity to a higher capacity over time. Further, we improve the mechanism of label choosing for small communities to escape from local maximum. The experimental results on both synthetic and real networks demonstrate that our algorithm not only enhances the detection ability of the traditional label propagation algorithm, but also improves the quality of the identified communities.  相似文献   

9.
X. Liu  T. Murata 《Physica A》2010,389(7):1493-1500
A modularity-specialized label propagation algorithm (LPAm) for detecting network communities was recently proposed. This promising algorithm offers some desirable qualities. However, LPAm favors community divisions where all communities are similar in total degree and thus it is prone to get stuck in poor local maxima in the modularity space. To escape local maxima, we employ a multistep greedy agglomerative algorithm (MSG) that can merge multiple pairs of communities at a time. Combining LPAm and MSG, we propose an advanced modularity-specialized label propagation algorithm (LPAm+). Experiments show that LPAm+ successfully detects communities with higher modularity values than ever reported in two commonly used real-world networks. Moreover, LPAm+ offers a fair compromise between accuracy and speed.  相似文献   

10.
Community structure is an important property of complex networks. Most optimization-based community detection algorithms employ single optimization criteria. In this study, the community detection is solved as a multiobjective optimization problem by using the multiobjective evolutionary algorithm based on decomposition. The proposed algorithm maximizes the density of internal degrees, and minimizes the density of external degrees simultaneously. It can produce a set of solutions which can represent various divisions to the networks at different hierarchical levels. The number of communities is automatically determined by the non-dominated individuals resulting from our algorithm. Experiments on both synthetic and real-world network datasets verify that our algorithm is highly efficient at discovering quality community structure.  相似文献   

11.
Community structure is an important feature in many real-world networks. Many methods and algorithms for identifying communities have been proposed and have attracted great attention in recent years. In this paper, we present a new approach for discovering the community structure in networks. The novelty is that the algorithm uses the strength of the ties for sorting out nodes into communities. More specifically, we use the principle of weak ties hypothesis to determine to what community the node belongs. The advantages of this method are its simplicity, accuracy, and low computational cost. We demonstrate the effectiveness and efficiency of our algorithm both on real-world networks and on benchmark graphs. We also show that the distribution of link strength can give a general view of the basic structure information of graphs.  相似文献   

12.
The investigation of community structure in networks is an important issue in many disciplines, which still remains a challenging task. First, complex networks often show a hierarchical structure with communities embedded within other communities. Moreover, communities in the network may overlap and have noise, e.g., some nodes belonging to multiple communities and some nodes marginally connected with the communities, which are called hub and outlier, respectively. Therefore, a good algorithm is desirable to be able to not only detect hierarchical communities, but also to identify hubs and outliers. In this paper, we propose a parameter-free hierarchical network clustering algorithm DenShrink. By combining the advantages of density-based clustering and modularity optimization methods, our algorithm can reveal the embedded hierarchical community structure efficiently in large-scale weighted undirected networks, and identify hubs and outliers as well. Moreover, it overcomes the resolution limit possessed by other modularity-based methods. Our experiments on the real-world and synthetic datasets show that DenShrink generates more accurate results than the baseline methods.  相似文献   

13.
Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well as to determine the number of communities. In this paper, we proposed the detecting overlapping communities based on vital nodes algorithm(DOCBVA), an algorithm based on vital nodes and initial seeds to detect overlapping communities. First, through some screening method, we find the vital nodes and then the seed communities through the pretreatment of vital nodes. This process differs from most existing methods, and the speed is faster. Then the seeds will be extended. We also adopt a new parameter of attribution degree to extend the seeds and find the overlapping communities. Finally, the remaining nodes that have not been processed in the first two steps will be reprocessed. The number of communities is likely to change until the end of algorithm. The experimental results using some real-world network data and artificial network data are satisfactory and can prove the superiority of the DOCBVA algorithm.  相似文献   

14.
The complexity of many community detection algorithms is usually an exponential function with the scale which hard to uncover community structure with high speed. Inspired by the ideas of the famous modularity optimization, in this paper, we proposed a proper weighting scheme utilizing a novel k-strength relationship which naturally represents the coupling distance between two nodes. Community structure detection using a generalized weighted modularity measure is refined based on the weighted k-strength matrix. We apply our algorithm on both the famous benchmark network and the real networks. Theoretical analysis and experiments show that the weighted algorithm can uncover communities fast and accurately and can be easily extended to large-scale real networks.  相似文献   

15.
We have recently introduced [Phys. Rev. E 75, 045102(R) (2007); AIP Conference Proceedings 965, 2007, p. 323] an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.  相似文献   

16.
Xiaojia Li  Yanqing Hu  Ying Fan 《Physica A》2010,389(1):164-170
Many networks are proved to have community structures. On the basis of the fact that the dynamics on networks are intensively affected by the related topology, in this paper the dynamics of excitable systems on networks and a corresponding approach for detecting communities are discussed. Dynamical networks are formed by interacting neurons; each neuron is described using the FHN model. For noisy disturbance and appropriate coupling strength, neurons may oscillate coherently and their behavior is tightly related to the community structure. Synchronization between nodes is measured in terms of a correlation coefficient based on long time series. The correlation coefficient matrix can be used to project network topology onto a vector space. Then by the K-means cluster method, the communities can be detected. Experiments demonstrate that our algorithm is effective at discovering community structure in artificial networks and real networks, especially for directed networks. The results also provide us with a deep understanding of the relationship of function and structure for dynamical networks.  相似文献   

17.
《Physics letters. A》2014,378(18-19):1239-1248
Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh–Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.  相似文献   

18.
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser.This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks.Firstly,we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure.Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem.This method is applied to a variety of real-world and artificial complex networks,and the partition results confirm its effectiveness and accuracy.  相似文献   

19.
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser. This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks. Firstly, we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure. Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem. This method is applied to a variety of real-world and artificial complex networks, and the partition results confirm its effectiveness and accuracy.  相似文献   

20.
Many overlapping community detection algorithms have been proposed. Most of them are unstable and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first evaluate a reliability measure for each community in all base covers and assign a proportional weight to each one. Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but also the reliability of the communities. Experimental results on both artificial and real-world networks show that our algorithm can find overlapping communities accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号